Search results

Search for "nanoparticles" in Full Text gives 1138 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas – ESPE, Av. General Rumiñahui 171-5-231B, Sangolquí, PO Box 171-5-231B, Ecuador 10.3762/bjnano.14.91 Abstract The purpose of this research was to synthesize nanocomposites consisting of sulfur nanoparticles coated with
  • eucalyptus and rosemary essential oils to determine the insecticidal effect in the control of nymphs of paratrioza (Bactericera cockerelli (Sulc) (Hemiptera: Triozidae)) in potato crops. A solution of thiosulfate was reduced to elemental sulfur, and the sulfur nanoparticles were coated with eucalyptus and
  • development of new nanoinsecticides to combat pests in a more productive, cost-effective, and eco-friendly way [8][12]. Nanoscale agricultural products are developed using nanotechnology, such as nanopesticides, nanoinsecticides, nanoemulsions, and nanoparticles, to reduce the use of toxic chemicals [14
PDF
Album
Full Research Paper
Published 17 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • nanotubes (CNTs) at different mass fractions in a refrigeration compressor was experimentally investigated. The required electrical power of the compressor was measured to determine the effect of the use of nanolubricants. Nanoparticles used in the preparation of nanolubricants were gradually added to the
  • operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al2O3, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor
  • increasing nanoparticle fraction. In conclusion, nanolubricants containing nanoparticles above the optimum mass fraction increase the required electrical power of the compressor. It is concluded that nanoparticle fractions should not be used above the optimum value in nanolubricant applications. Keywords
PDF
Album
Full Research Paper
Published 02 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • arise spontaneously from C3 by hydrolysis, could be considered here. Moghimi et al. report numerous possible interactions of the complement system with, among others, nanoparticles as a drug delivery system [44]. The authors also discussed the possible effects of spontaneously forming water shells and
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • , have gained much attention from many research teams. This study describes a low-cost photodetector based on CuO nanoparticles and ZnO nanorods operating in a wide range of light wavelengths (395, 464, 532, and 640 nm). Particularly, under 395 nm excitation, the heterostructure device exhibits high
  • nanoparticles and ZnO nanorods obtained via a simple and cost-effective synthesis process has great potential for optoelectronic applications. Keywords: CuO nanoparticles; heterojunction; optoelectronics; visible-light photodetector; ZnO nanorods; Introduction Optoelectronics is a field to accelerate the
  • photodetector based on CuO nanoparticles (CuO NPs) and ZnO nanorods (ZnO NRs). CuO NPs were loaded onto ZnO NRs by a cost-effective, simple hydrothermal method at low synthesis temperature [38]. The CuO/ZnO photodetector was characterized, and its sensitivity was evaluated regarding visible-light wavelengths
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • assays (LFAs) are currently the most widely used point-of-care testing technique with remarkable advantages such as simple operation, rapid analysis, portability, and low cost. Traditionally, gold nanoparticles are employed as tracer element in LFAs due to their strong localised surface plasmon resonance
  • different parts, namely sample pad, conjugate pad, nitrocellulose membrane, and adsorbent pad, maintaining a smooth flow of reagents through the LFA membrane. In the presence of a sample, the analyte initially reacts with affinity molecules, commonly antibodies linked with tracers such as gold nanoparticles
  • , before being captured by immobilized biomolecules on a test line in the nitrocellulose membrane [6][7]. In conventional LFAs, most commonly gold nanoparticles and coloured cellulose nanobeads have been used as tracer elements because of strong light absorption and surface plasmon resonance, which yield
PDF
Album
Review
Published 04 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • nanoparticles with a defective zinc blende structure under mild conditions through thermal annealing of hydrogenated silicon nanoparticles with red phosphorus. The synthesized Si3P4 nanoparticles were analyzed using FTIR, XRD, electron diffraction, EDX, TEM, Raman spectroscopy, X-ray fluorescence spectrometry
  • , and UV–vis spectrophotometry. For the isolated cubic Si3P4 phase, a cell parameter of a = 5.04 Å was determined, and the bandgap was estimated to be equal to 1.25 eV. Because of the nanoscale dimensions of the obtained Si3P4 nanoparticles, the product may exhibit several exceptional properties as a
  • calculations; semiconductor nanocrystals; silicon phosphide; Introduction Advancements in electronics and related fields are calling for new ways of synthesizing compounds. Subsequently, recognizing and utilizing the special properties of nanoparticles (NPs) of new materials using emerging methods offers a
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • prepare Cu-based MOF nanoparticles (UHM-30) for gas storage, as depicted in Figure 2 [27]. The benefit of this strategy is the generation of both OMSs and LBCs, resulting in an enhanced CO2 adsorption capacity for UHM-30 (5.26 mmol·g−1) compared to HKUST-1 (4.69 mmol·g−1). The effectiveness of amino
  • . In a recent study, Gaikwad et al. modified MOF-177 nanoparticles using three different amines to enhance the amount of absorbed CO2 [37]. The optimally functionalized MOF-177, employing tetraethylenepentamine (TEPA), exhibited a remarkably higher amount of absorbed CO2 than bare MOF-177 under the
PDF
Album
Review
Published 20 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • Joyita Roy Souvik Pore Kunal Roy Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India 10.3762/bjnano.14.77 Abstract Nanoparticles with their unique features have attracted researchers over the past decades. Heavy
  • metals, upon release and emission, may interact with different environmental components, which may lead to co-exposure to living organisms. Nanoscale titanium dioxide (nano-TiO2) can adsorb heavy metals. The current idea is that nanoparticles (NPs) may act as carriers and facilitate the entry of heavy
  • present work manifests that ML in conjunction with periodic table descriptors can be used to explore the features and predict unknown compounds with similar properties. Keywords: heavy metals; HK-2 cell; ML algorithm; periodic table descriptors; QSAR; Introduction Nanoparticles (NPs) have gained much
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of
  • higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of
  • -directed enzyme prodrug therapy, small molecule drug conjugates, and others are being investigated [2][3]. Targeted delivery with nanoparticles (NPs) has received a lot of attention because it reduces toxicity while also providing good drug compatibility and loadability. Furthermore, NPs increase drug
PDF
Album
Review
Published 04 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • within MOFs, thereby enhancing the CO2RR process. Besides, MOFs could be used as ideal precursors for the controlled dispersion of metal nanoparticles within organic frameworks, either through operational conditions or via the pyrolysis technique, thereby promoting efficient CO2 reduction [35][36]. The
  • ]. Cu nanoparticles were created during when the CuII/ade-MOFs reconstructed and act as active centers for CO2 reduction to CH4 and C2H4. Conclusion and Outlook MOFs were recognized as promising nanomaterials for the transformation of CO2 into valuable products through electrochemical processes. This
PDF
Album
Review
Published 31 Aug 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • The main goal of this work was to evaluate the therapeutic potential of green superparamagnetic iron oxide nanoparticles (SPIONs) produced with coconut water for treating cutaneous leishmaniasis caused by Leishmania amazonensis. Optical and electron microscopy techniques were used to evaluate the
  • effort on the search for new treatments for different diseases. Its main objective is to develop therapies with higher specificity, effectiveness, and safety, as well as less toxicity [6]. One interesting class of nanomaterials in medicine are superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs
  • also be observed, namely electron-lucent lipid bodies, a multivesicular body close to the Golgi complex, and endoplasmic reticulum profiles very close to organelles such as mitochondrion and glycosome. Higher magnification revealed that the SPION aggregates are constituted of small nanoparticles that
PDF
Album
Full Research Paper
Published 30 Aug 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • reported the use of a benzimidazolium gold complex in dichloromethane (DCM) that readily functionalizes gold nanoparticles (AuNPs) in aqueous solution [15][19]. In our work using solution-based approaches to form NHC monolayers on gold thin films, we observed a loss of gold from our substrates. It is
  • species (Figure 1) and prepared solutions in THF, DCM, and toluene in which we immersed gold-coated glass slide tokens. We additionally exposed selected solutions to gold nanoparticles in aqueous solutions. Results and Discussion The photograph in Figure 2 shows the loss of gold after immersion for 2 h of
  • aqueous solution with 10 μL of 5.00 × 10−3 M of 1 in THF. No appreciable change in the UV–vis spectrum was observed over 6 h of hourly measurements (Figure 5), indicating no detectable change in diameter (ca. 47 nm) and concentration of the nanoparticles [26]. This is not surprising given the low
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • , respectively, 2.4 times and 1.6 times greater than those of pure P(VDF-TrFE) nanogenerators [14]. Subash et al. added ZnO nanoparticles and exfoliated graphene oxide to P(VDF-TrFE) to prepare a composite nanofilm with excellent touch sensitivity and high output energy. They also used the piezoelectric film for
  • bottle was sealed and placed in a shaking mixer and shaken for 3 h. Next, ZnO nanoparticles (Shanghai Keyan Industrial Co., Ltd., particle size 3 ± 5 nm, content ≥99.8%) and GR filler (Shenzhen Turing Evolution Technology Co., Ltd., carbon content 98%, average diameter/thickness ratio = 9500) were added
  • XRD map of the composite nanofilm. This indicates that ZnO exists in the form of nanoparticles in the fiber film after being added to P(VDF-TrFE) [20][21]. P(VDF-TrFE)/ZnO/GR exhibits the highest β-phase content among the three films, with P(VDF-TrFE)/ZnO showing a slightly higher content than P(VDF
PDF
Album
Full Research Paper
Published 31 Jul 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • ) and a biphasic drug release profile with an initial burst release followed by a prolonged phase. The hydrodynamic average diameter and zeta potential of NLC obtained by dynamic light scattering were approximately 150 nm and −13 mV, respectively, while spherical and well-distributed nanoparticles were
  • observed by transmission electron microscopy. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and small-angle X-ray scattering analyses of the nanoparticles indicated that BNZ might be dispersed in the nanoparticle matrix in an amorphous state. The
  • mean size, zeta potential, polydispersity index, and %EE of the formulation remained stable for at least six months. The hemolytic effect of the nanoparticles was insignificant compared to that of the positive lysis control. The nanoparticle formulation exhibited similar performance in vitro against T
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • tool for detecting ultralow concentrations of chemical compounds and biomolecules. We present a reproducible method for producing Ag nanoparticles that can be used to create highly sensitive SERS substrates. A microfluidic device was employed to confine the precursor reagents within the droplets
  • , resulting in Ag nanoparticles of uniform shape and size. The study investigates the effects of various synthesis conditions on the size distribution, dispersity, and localized surface plasmon resonance wavelength of the Ag nanoparticles. To create the SERS substrate, the as-synthesized Ag nanoparticles were
  • formation of a charge-transfer complex between chemisorbed species and matrix material, which yields enhancement when the excitation frequency resonates with a charge-transfer transition [7]. Noble metal nanoparticles (NPs) have gained much popularity in various fields, such as analytical chemistry and
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam 10.3762/bjnano.14.64 Abstract We present the in situ synthesis of silver nanoparticles (AgNPs) through
  • activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material. Keywords: alginate; bacterial activity; catalysis; lactose; silver nanoparticles; synthesis; Introduction
  • Silver nanoparticles (AgNPs) have raised significant interest for their wide range of applications in biomedicine [1][2], treatment of wastewater [3][4], and catalysis [5][6]. The utilization of eco-friendly sources, such as plant extracts [7][8], fungi [9][10], and bacteria [11], for synthesizing AgNPs
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • of nanoceria (i.e., cerium oxide in the form of nanoparticles) can store or release oxygen, cycling between Ce3+ and Ce4+; therefore, they can cause or relieve oxidative stress within living systems. Nanoceria dissolution occurs in acidic environments. Nanoceria stabilization is a known problem even
  • did not occur in the dark in the presence of most carboxylic acids. Light initiates free radicals generated by ceria nanoparticles. Nanoceria completely dissolved in the presence of citric, malic, and isocitric acid when exposed to light, attributed to nanoceria dissolution, release of Ce3+ ions, and
  • percentage of cerium carboxylates in the shoots in the absence of added phosphate [18]. Nanoceria can be taken up by food crops; however, limited biotransformation was observed in soil cultivated soybeans [19]. Coated and uncoated ceria nanoparticles were found in the roots and shoots of corn plants. The
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • performance of the electrode (432.3 mAh·g−1 at a specific current of 5000 mA·g−1) are attributed to the enhancement in distribution and chemical contact between Ge nanoparticles and the biomass-based carbon matrix. A comparison with other synthesis routes has been conducted to demonstrate the effectiveness of
  • nanostructures of the obtained products because of its simplicity in operation and the applicability for pseudomorphic transformations [26][27][28]. For instance, in our previous study, a magnesiothermic reaction was applied for the reduction of GeO2 to Ge nanoparticles [29]. In addition to improving the cycling
  • performance of Ge-based anodes, a carbon matrix is the most popular choice to disperse nanoparticles, avoiding their aggregation and reducing the internal stress induced by volume variation, because of its flexible structure and high conductivity [30][31][32]. In our recent study, the combination of Ge
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • -temperature environment, which forms a rough surface covered with nanoparticles. The carbide layer formed on the wire will induce localized stress on the surface due to lattice mismatch and, consequently, a breakup along grain boundaries to yield particles of different sizes and shapes [13]. According to the
  • graphene sheets on the surface [18][19]. In flame synthesis, the rapid heating rate causes catalytic activation and nucleation to occur almost instantaneously by the arrangement of carbon atoms on the surface of catalyst nanoparticles, leading to cap formation and liftoff. Figure 2b and Figure 2d show
  • large average CNT diameter with high standard deviation suggests different sizes of formed particles, possibly due to the high temperature. Generally, the size of nanoparticles is affected by several factors, including solution concentration, deposition method, quantity, and annealing [25]. At higher
PDF
Album
Full Research Paper
Published 21 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • studies [20][21][22]. Besides, Nhu et al. [23] used rosin as a green chemical approach to fabricate ZnO nanoparticles, exhibiting a high photocatalytic activity for both methylene blue (100%) and methyl orange (82.78%) decomposition after 210 min under UV radiation. Moreover, the advantages in the
PDF
Album
Editorial
Published 13 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • dots and 3D bismuth oxyiodine hybrid hollow microspheres for the detection of chlopyrifos [26]. In 2020, Jiménez-López et al. worked on a fluorescent probe containing graphene quantum dots and silver nanoparticles for glyphosate detection [27]. In 2021, Xu Dan et al. developed a histidine
PDF
Album
Full Research Paper
Published 09 Jun 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • manipulation of nanoparticles by optical forces. It is important to use low-power lasers to achieve efficient trapping and avoid any harmful heating effects. Keywords: all-dielectric nanostructures; anapole; optical force; quasi-bound states in the continuum; toroidal dipole; Introduction Optical forces have
  • to effectively capture subwavelength nanoparticles by overcoming the diffraction limit [4], which has aroused broad research interest. However, due to the high loss of metals, the Joule heating effect caused by the absorption of light leads to increasing temperatures of plasmonic nanotweezers, and
  • the metasurface structure, in which the virtual domain used to calculate the optical force is defined and the displacement currents used for multipole analysis are obtained, and E is the total electric field inside the disk. The multipole analysis is normally used for isolated nanoparticles. However
PDF
Album
Full Research Paper
Published 02 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • developing luminescent sensors include their toxicity, ease of aggregation, photobleachability, and low capacity for adsorption of the target analyte. Numerous luminescent materials, including semiconductors, metal complexes, metal-based fluorescent nanoparticles, MOFs, and inorganic phosphors doped with
  • , which lowers their electrochemical detection performance [64]. Researchers have focused on various research efforts to improve the conductivity and amplify the electrical signals of MOFs by combining them with other highly conductive materials (such as carbon materials, metal nanoparticles, or metal
  • oxides) [63][64][65][66][67][68][69]. This is motivated by their large surface area, which can facilitate the loading of nanoparticles. Additionally, MOFs have been converted into their electrochemically active derivatives, such as mesoporous carbon composites and porous metal oxides, to achieve an
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • -Magurele, Romania National Institute of Materials Physics, Atomistilor Str., No. 405A, 077125, Bucharest-Magurele, Romania Romanian Academy, Inst. Phys. Chem. Ilie Murgulescu, 202 Spl. Independentei, 060021, Bucharest, Romania 10.3762/bjnano.14.51 Abstract TiO2 nanoparticles were synthesized by laser
  • Degussa P25 sample. Two series of samples were obtained. Series “a” includes thermally treated TiO2 nanoparticles (to remove impurities) that have different proportions of the anatase phase (41.12–90.74%) mixed with rutile and small crystallite sizes of 11–22 nm. Series “b” series represents nanoparticles
  • with high purity, which did not require thermal treatment after synthesis (ca. 1 atom % of impurities). These nanoparticles show an increased anatase phase content (77.33–87.42%) and crystallite sizes of 23–45 nm. The TEM images showed that in both series small crystallites form spheroidal
PDF
Album
Full Research Paper
Published 22 May 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • photocatalysis, adsorption, and EM absorption [25]. Researchers have developed ZnO-based absorbing materials with different microstructures, such as core–shell structures [26], flower-like structures [27], rod-like structures [28], cage-like structures, and nanoparticles [29][30]. Wu et al. demonstrated that it
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023
Other Beilstein-Institut Open Science Activities