Search results

Search for "nanotribology" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • surface, and the competition between diffusion of hydrates into solution and their precipitation into a growing outer layer. Understanding the mechanisms of nanoscale friction on metallic glasses is a basis for applications involving mechanical contacts under corrosive conditions. Also, nanotribology
  • offers unique methods to resolve the microscopic corrosion process in situ. Although results were reported here for metallic glasses, we suggest that the study of surface layers and charges by nanotribology can be extended to the understanding of corrosion mechanisms in other metal and alloy systems
  • . acknowledge Eduard Arzt for the continuing support of this project. The doctoral dissertation by Haoran Ma (2021) is a major source of this article (Nanotribology of metallic glasses in corrosive environments. Doctoral Dissertation, Saarland University, Saarbrücken, Germany. https://dx.doi.org/10.22028/D291
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • ]. 3 Applications of nanofluidics with tunable slip length 3.1 Drag reduction Reducing drag is of great significance in many areas related to nanotechnology, such as nanotribology [117], nanomedicine [118], and electrokinetics [119] due to the low energy dissipation. For instance, it has been reported
PDF
Album
Review
Published 17 Nov 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • body mass in fibrillar pad systems in representatives of diverse animal groups: 1, 2, 4, 5, flies; 3 beetle; 6 bug; 7 spider; 8 Gekkonid lizard (Figure 6C is from [247] and was adapted by permission from Springer Nature from “Biological Micro– and Nanotribology: Nature’s Solutions” by M. Scherge and S
PDF
Album
Review
Published 15 Jul 2021

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • particles became immovable again. This effect was attributed to the diffusion of Au into the Si substrate and to the growth of the SiO2 layer. Keywords: annealing; atomic force microscopy (AFM); Au nanoparticles; manipulation; melting; nanotribology; Introduction Gold is one of the most prominent
PDF
Album
Full Research Paper
Published 06 Jan 2020

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • : nanotribology; nanoadhesion; nanofriction; Nanotribology is a young and dynamic field of research which aims to investigate friction, wear and adhesion phenomena down to the nanometer scale. Since these phenomena occur in all natural, artificial or conceptual situations involving two surfaces (at least) in
  • contact or in close proximity to each other, it is not surprising that, knowingly or not, many physicists, materials scientists, mechanical engineers or chemists have to contend with these topics sooner or later in their careers. This Thematic Series is intended as an “invitation to nanotribology
  • techniques for materials characterization are those typical of surface science (e.g., X-ray diffraction, SEM, TEM, XPS and Raman spectroscopy), more specific to nanotribology are nanoindenters, nanotribometers, quartz force microbalance and especially atomic force microscopy (AFM), which, without a doubt
PDF
Editorial
Published 28 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • patterns on a lattice-mismatched crystal overlayer [10][11][12]. One of the most frequent motivations to utilize FFM as a tool in nanotribology is its ability to mimic a single-asperity contact by the junction between a sharp AFM tip and the substrate. Such single-asperity contacts are widely considered as
  • crystals [58] can be analyzed (see [59] for a detailed review on single-molecule manipulation in nanotribology). These experimental efforts are accompanied by increasing theoretical work, where the analysis of specific nanoscale systems and systematic variation of their key characteristics provides
  • materials, make testing and comparison with theoretical predictions a mission that is far from trivial. In this view, the field of atomic-scale friction, and nanotribology in general, can now take advantage of the possibilities offered by handling nano/micro-sized particles with optically generated
PDF
Album
Review
Published 16 Jul 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • wear. Friction, wear, and the re-passivation by oxides are discussed based on results for the temporal development of friction forces, on images of the scanned area after friction force microscopy experiments, and on electron microscopy of the tips. Keywords: contact ageing; friction; nanotribology
PDF
Album
Full Research Paper
Published 05 Jun 2018

Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface

  • Alexei Khomenko,
  • Miroslav Zakharov,
  • Denis Boyko and
  • Bo N. J. Persson

Beilstein J. Nanotechnol. 2018, 9, 1239–1246, doi:10.3762/bjnano.9.115

Graphical Abstract
  • peaks of radial distribution function are blurred indicating that the nanoparticles are amorphous or polycrystalline. Keywords: aluminum; friction force; graphene; nanoparticle; nanotribology; palladium; Introduction The study of surface or interface phenomena at the atomic level has attracted
PDF
Album
Full Research Paper
Published 19 Apr 2018

Velocity dependence of sliding friction on a crystalline surface

  • Christian Apostoli,
  • Giovanni Giusti,
  • Jacopo Ciccoianni,
  • Gabriele Riva,
  • Rosario Capozza,
  • Rosalie Laure Woulaché,
  • Andrea Vanossi,
  • Emanuele Panizon and
  • Nicola Manini

Beilstein J. Nanotechnol. 2017, 8, 2186–2199, doi:10.3762/bjnano.8.218

Graphical Abstract
  • ; dissipation; friction; nanotribology; phonons; velocity dependence; Introduction Friction affects a wide variety of phenomena spanning broad ranges of length and time scales. Due to its practical and technological relevance, the study of friction was addressed even long before physics became a science
  • kinetic energy of a macroscopic ordered motion into the internal energy of disordered thermal phonons. Both standard basic models of nanotribology, namely the Prandtl–Tomlinson model [1][2][13] and the Frenkel–Kontorova model [13][15][16][17][18], implement dissipation through a phenomenological viscous
PDF
Album
Full Research Paper
Published 19 Oct 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • : additives; alumina; aqueous colloids; fractal; friction; lubricants; nanodiamond; nanotribology; quartz crystal microbalance; stainless steel; Introduction Interest in nanoparticles as eco-friendly lubricant additives has grown tremendously in recent years [1][2]. The field is driven in a large part by a
PDF
Album
Full Research Paper
Published 29 Sep 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • stable surface layer, which hinders the contact between the sliding surfaces. Keywords: additives; ionic liquids; lubricants; nanotribology; silicon; Introduction The use of ILs as neat lubricants was first proposed by Ye et al. in 2001 [1]. Since then, many investigations confirmed the good
PDF
Album
Full Research Paper
Published 20 Sep 2017

Nanotribological behavior of deep cryogenically treated martensitic stainless steel

  • Germán Prieto,
  • Konstantinos D. Bakoglidis,
  • Walter R. Tuckart and
  • Esteban Broitman

Beilstein J. Nanotechnol. 2017, 8, 1760–1768, doi:10.3762/bjnano.8.177

Graphical Abstract
  • ] have reported P/S2 (i.e., H/Er2) as a useful characterizing parameter, even when the development of pile-up is considerable [35]. Nanotribology tests In order to evaluate the frictional behavior of the samples and their wear resistance, microscale friction tests were performed. The experimental setup
PDF
Album
Full Research Paper
Published 25 Aug 2017

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • the interpretation that the tip penetrates the electrochemical double layer at this point. At the potential (or point) of zero charge (pzc), stick–slip resolution persists at all normal forces investigated. Keywords: AFM; friction; friction force microscopy; nanotribology; underpotential deposition
PDF
Album
Full Research Paper
Published 26 Mar 2015

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. Keywords: contact mechanics; nanomanipulation; nanoparticles; nanotribology; scanning electron microscopy (SEM); Introduction The manipulation of nanoparticles (NPs) is a powerful
  • method for the investigation of the mobility of nano-objects on solid substrates and it is contributing to a deeper understanding of nanomechanics and nanotribology [1]. Thanks to the rapid progress in the synthesis of NPs, there is a wide choice of materials, structures, compositions, shapes and
  • coatings of NPs for nanomanipulation experiments. NPs demonstrate many intriguing phenomena, which are important for nanotribology and nanotechnology in general, for example low-temperature melting [2], vanishing friction [3], contact aging [4], etc. The frictional properties of NPs have been extensively
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • indenter and decreases with roughness. Distinct differences between the present experimental results and the existing theoretical models/predictions are discussed. Keywords: nanoindentation; nanotribology; scratch testing; surface roughness; Introduction Understanding the contact phenomena underlying
PDF
Album
Full Research Paper
Published 28 Jan 2013

Nanotribology at high temperatures

  • Saurav Goel,
  • Alexander Stukowski,
  • Gaurav Goel,
  • Xichun Luo and
  • Robert L. Reuben

Beilstein J. Nanotechnol. 2012, 3, 586–588, doi:10.3762/bjnano.3.68

Graphical Abstract
  • propose that cubic boron nitride “CBN” could be an alternative appropriate choice for high-temperature nanotribology applications because of its superior thermal and chemical stability compared to that of diamond. Even though diamond and CBN have similar lattice structures, their surface chemistry is
PDF
Album
Commentary
Published 15 Aug 2012
Other Beilstein-Institut Open Science Activities