Search results

Search for "perfusion" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • halted cellular activity using perfusion with a fixative, which allowed researchers to separate the passive and active transport mechanisms [31]. Nevertheless, research currently confirms the existence of a completely different active transport mechanism of NPs across the endothelium that is unrelated to
PDF
Album
Review
Published 08 Mar 2023

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • % paraformaldehyde via intracardiac perfusion. Tumors were then collected, sectioned and analyzed by immunohistochemistry to investigate expression of HSP70 according to a standard protocol [24]. Images were captured using a bright-light microscope (Olympus). Statistical analyses All the data were analyzed by
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • , custom parallel plate perfusion chambers were coated overnight with 100 μg/mL VWF, washed with phosphate-buffered saline and blocked with 1% bovine serum albumin for 1 h prior to use. Whole blood was labelled with 1 μM DiOC6 (Sigma-Aldrich, Ireland) for 5 min at 37 °C prior to perfusion through the
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • after nanoprobe injection, the tumor-bearing mice were sacrificed according to the previously described methods using heart perfusion with saline and the major organs (brain, heart, liver, spleen, lung and kidney) were sampled for ex vivo fluorescence imaging by an IVIS spectrum imaging system [27
  • sections. After staining with DAPI, fluorescence images of the brain slices were obtained with a laser confocal microscope (ZEISS, 710, LSM, Germany). For electron microscopy samples, the tumor-bearing mice were sacrificed by heart perfusion with saline and 4% paraformaldehyde 24 hours after injection
PDF
Album
Full Research Paper
Published 11 Sep 2019

Perfusion double-channel micropipette probes for oxygen flux mapping with single-cell resolution

  • Yang Gao,
  • Bin Li,
  • Riju Singhal,
  • Adam Fontecchio,
  • Ben Pelleg,
  • Zulfiya Orynbayeva,
  • Yury Gogotsi and
  • Gary Friedman

Beilstein J. Nanotechnol. 2018, 9, 850–860, doi:10.3762/bjnano.9.79

Graphical Abstract
  • double-channel micropipette is proposed and investigated as a probe to achieve this goal by sampling fluid near the point of interest. A finite element model (FEM) of this perfusion probe is validated by comparing simulation results with experimental results of hydrodynamically confined fluorescent
  • molecule diffusion. The FEM is then used to investigate the dependence of the oxygen concentration variation and the measurement signal on system parameters, including the pipette’s shape, perfusion velocity, position of the oxygen sensors within the pipette, and proximity of the pipette to the substrate
  • . The work demonstrates that the use of perfusion double-barrel micropipette probes enables the detection of oxygen consumption signals with micrometer spatial resolution, while amplifying the signal, as compared to sensors without the perfusion system. In certain flow velocity ranges (depending on
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • hydrogel composed of the aligned nanofibrils, enhanced cellular outgrowth was induced via augmented expression of integrin α1, which resulted in arteriogenesis and blood perfusion recovery in the mouse ischemia model. In another study, hydrogel films made of concentrated collagen type I showed regular
PDF
Album
Review
Published 18 Jan 2018

Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices

  • Stephanie Hirn,
  • Nadine Haberl,
  • Kateryna Loza,
  • Matthias Epple,
  • Wolfgang G. Kreyling,
  • Barbara Rothen-Rutishauser,
  • Markus Rehberg and
  • Fritz Krombach

Beilstein J. Nanotechnol. 2014, 5, 2440–2449, doi:10.3762/bjnano.5.253

Graphical Abstract
  • perfusion of the tissue. Moreover, dead cells are present at the slice surface due to the cutting process [10]. However, airway dynamics are preserved in PCLS which allows the monitoring of bronchoconstriction triggered by chemical stimuli [11][12][13]. So far, PCLS are already used in pharmacotoxicology
PDF
Album
Full Research Paper
Published 18 Dec 2014

The gut wall provides an effective barrier against nanoparticle uptake

  • Heike Sinnecker,
  • Thorsten Krause,
  • Sabine Koelling,
  • Ingmar Lautenschläger and
  • Andreas Frey

Beilstein J. Nanotechnol. 2014, 5, 2092–2101, doi:10.3762/bjnano.5.218

Graphical Abstract
  • reduced by factors of 4.5 and 6 for, respectively, 270 and 360 min duration of the experiment. For evaluating the influences of gut motility on particle uptake, the peristalsis was varied by application of different doses of noradrenaline. Viability of the gut during and after the extracorporal perfusion
  • histological examination and always found to be in an acceptable range, with villi and enterocytes remaining intact after 270 or 360 min of perfusion, both in experiments with and without NP application as well as after contact with a reducing agent (see below). In order to be able to track even rare
  • particles, we instilled a reducing agent into the gut lumen after completion of the extracorporeal perfusion experiments. After 20 min incubation time the mucus was sufficiently fluidized to be removed gently from the gut. The mucus was then dissolved completely and the particle fluorescence was determined
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014
Other Beilstein-Institut Open Science Activities