Search results

Search for "photodegradation" in Full Text gives 70 result(s) in Beilstein Journal of Nanotechnology.

Surface-enhanced infrared absorption studies towards a new optical biosensor

  • Lothar Leidner,
  • Julia Stäb,
  • Jennifer T. Adam and
  • Günter Gauglitz

Beilstein J. Nanotechnol. 2016, 7, 1736–1742, doi:10.3762/bjnano.7.166

Graphical Abstract
  • without the use of labels. They lack the disadvantages of fluorescence technologies such as photodegradation, loss of bioactivity or costs of labeling. An early overview in the field of direct optical sensors, including optical principles and assay formats for selective detection, is given in [3] and
PDF
Album
Full Research Paper
Published 16 Nov 2016

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • performance The photocatalytic performance of CdS–ZnO binary and CdS–ZnO–RGO ternary nanocomposites is evaluated by measuring the photodegradation of methyl orange (MO), as model dye, under visible light irradiation from a solar simulator or under natural sun light. Prior to illumination, the suspension was
PDF
Album
Full Research Paper
Published 11 Nov 2016

An efficient recyclable magnetic material for the selective removal of organic pollutants

  • Clément Monteil,
  • Nathalie Bar,
  • Agnès Bee and
  • Didier Villemin

Beilstein J. Nanotechnol. 2016, 7, 1447–1453, doi:10.3762/bjnano.7.136

Graphical Abstract
  • hazard for human health, even at low concentrations [1][2][3]. Many technologies such as photodegradation, biodegradation, the Fenton process, or extraction by liquid membranes have been developed to eliminate these compounds in wastewater [4][5][6]. Among them, adsorption-based methods are extensively
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • light irradiation. The possible mechanism of photodegradation is discussed. Finally, ZnO:Ce rods are highly stable, so that they can be reused up to five times without significant performance loss, which is a very attractive feature for practical photocatalytic applications. Results and Discussion
  • ability of the Ce dopant to reduce charge recombinations is promising for the efficient photodegradation of pollutants. Photocatalytic degradation of Orange II We first investigated the photocatalytic activities of Ce-doped ZnO in comparison to ZnO rods in the photodegradation of Orange II used at a 10 mg
  • (5%) catalyst and demonstrates that the photodegradation is complete (see also Figure 8c). The ln(C/C0) plots show a linear relationship with the irradiation time, indicating that the photodegradation of Orange II occurs via a pseudo-first-order kinetic reaction ln(C/C0) = −kt, where k is the
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

  • Hoai Nga Le,
  • Frank Babick,
  • Klaus Kühn,
  • Minh Tan Nguyen,
  • Michael Stintz and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2015, 6, 2423–2430, doi:10.3762/bjnano.6.250

Graphical Abstract
  • the insignificant enhancement of MB discoloration. Conclusion This study addressed the photocatalysis performance of suspended catalysts in an aggregated state. In particular, we examined to what degree the state of dispersion of aggregated TiO2 nanoparticles (P25) affects the photodegradation of
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2015

Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

  • Alexander G. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Volodymyr M. Dzhagan,
  • Ovidiu D. Gordan,
  • Sergey L. Veber,
  • Cameliu Himcinschi,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 2388–2395, doi:10.3762/bjnano.6.245

Graphical Abstract
  • first can be attributed to scattering by surface optical modes, which was previously well-investigated in CdSe NCs [45][49][50]. The latter may originate from SERS by amorphous selenium formed on the NC surface due to partial photodegradation of CdSe NCs under laser illumination [51][52]. This mode has
PDF
Album
Full Research Paper
Published 14 Dec 2015

High photocatalytic activity of V-doped SrTiO3 porous nanofibers produced from a combined electrospinning and thermal diffusion process

  • Panpan Jing,
  • Wei Lan,
  • Qing Su and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 1281–1286, doi:10.3762/bjnano.6.132

Graphical Abstract
  • versatile, economic and simple approach to the preparation of 1D organic or inorganic nanomaterials [23][24]. This is followed by doping of V ions by a low temperature, thermal diffusion process. The photodegradation measurement indicates that V-doped, SrTiO3 porous nanofibers show an enhanced
PDF
Album
Letter
Published 09 Jun 2015

Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

  • Desiré M. De los Santos,
  • Javier Navas,
  • Teresa Aguilar,
  • Antonio Sánchez-Coronilla,
  • Concha Fernández-Lorenzo,
  • Rodrigo Alcántara,
  • Jose Carlos Piñero,
  • Ginesa Blanco and
  • Joaquín Martín-Calleja

Beilstein J. Nanotechnol. 2015, 6, 605–616, doi:10.3762/bjnano.6.62

Graphical Abstract
  • obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase. Keywords: nanoparticles; photocatalysis; pyrochlore; titanium dioxide; thulium; Introduction TiO2 is one of the most efficient
  • the samples annealed at 1173 K. In turn, the influence of this pyrochlore phase on the photocatalytic activity of rutile-phase TiO2 was analyzed by a study of the photodegradation of methylene blue. Experimental The synthesis method was based on the hydrolysis reaction of titanium(IV) isopropoxide
  • photodegradation of methylene blue (MB) was performed using a set of five actinic lamps emitting at around 360 nm. The initial concentration of the aqueous solution of MB (purity 82%, Panreac) was 1.56 · 10−5 M, and the concentration of the photocatalyst was 0.3 g·L−1. The photocatalyst/MB mixture was kept in
PDF
Album
Full Research Paper
Published 02 Mar 2015

Poly(styrene)/oligo(fluorene)-intercalated fluoromica hybrids: synthesis, characterization and self-assembly

  • Giuseppe Leone,
  • Francesco Galeotti,
  • William Porzio,
  • Guido Scavia,
  • Luisa Barba,
  • Gianmichele Arrighetti,
  • Giovanni Ricci,
  • Chiara Botta and
  • Umberto Giovanella

Beilstein J. Nanotechnol. 2014, 5, 2450–2458, doi:10.3762/bjnano.5.254

Graphical Abstract
  • ]. PT15, selected as a representative sample, shows good chromatic stability when irradiated by a 100 mW/cm2 UV lamp at 365 nm (Figure 6b), compared to the flat film of neat TF (Figure 6a). The photodegradation of fluorene-based compounds leads to a reduction of PL intensity together with the appearance
PDF
Album
Full Research Paper
Published 19 Dec 2014

Characterization and photocatalytic study of tantalum oxide nanoparticles prepared by the hydrolysis of tantalum oxo-ethoxide Ta83-O)2(μ-O)8(μ-OEt)6(OEt)14

  • Subia Ambreen,
  • N D Pandey,
  • Peter Mayer and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2014, 5, 1082–1090, doi:10.3762/bjnano.5.121

Graphical Abstract
  • observed that Ta2O5 particles calcined at 750 °C possess best degradation efficiency (Figure 15). This may be due to increase in crystallinity and surface area with more active sites for photodegradation process when temperature is increased from 650 °C to 750 °C. A further increase in calcination
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2014

DFT study of binding and electron transfer from colorless aromatic pollutants to a TiO2 nanocluster: Application to photocatalytic degradation under visible light irradiation

  • Corneliu I. Oprea,
  • Petre Panait and
  • Mihai A. Gîrţu

Beilstein J. Nanotechnol. 2014, 5, 1016–1030, doi:10.3762/bjnano.5.115

Graphical Abstract
  • data as well as the key requirements for efficient photodegradation based on theoretical arguments. Computational details The structures of all pollutants were optimized in neutral as well as deprotonated forms, using DFT [31][32][33], with the B3LYP exchange–correlation functional [34][35] and the
PDF
Album
Full Research Paper
Published 11 Jul 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • potential applications of carbon nanodots [107][108][109][110], among the latter of which is their use as a photosensitizer for the visible-light photocatalysis. For example, TiO2/carbon nanodots demonstrate an efficient photodegradation of methyl blue under visible light [112]. The visible-light
  • carbon nanodots can effectively harness the broad spectrum of sunlight to improve the photocatalytic activities of monoclinic bismuth vanadate (m-BiVO4) for the photodegradation of methylene blue [133]. The carbon nanodots play a twofold role in this photocatalytic process. Firstly, carbon nanodots
PDF
Album
Review
Published 23 May 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • ), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible
  • light irradiation. Keywords: anodic oxidation; graphene quantum dots; photocatalyst; photodegradation; TiO2 nanotube arrays; Introduction Semiconductor-mediated photocatalysis is a promising technique for the conversion of solar energy as well as degradation of organic pollutants in air and water [1
  • ). Thermogravimetric analysis was performed in air using a thermogravimetric analyzer (Perkin Elmer, TGA 6). The samples were heated from 50 °C to 800 °C at a rate of 10 °C·min−1. Photocatalytic activity measurements: The photocatalytic activities of catalysts were evaluated by measuring the photodegradation of
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014

Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4

  • Difa Xu,
  • Shaowen Cao,
  • Jinfeng Zhang,
  • Bei Cheng and
  • Jiaguo Yu

Beilstein J. Nanotechnol. 2014, 5, 658–666, doi:10.3762/bjnano.5.77

Graphical Abstract
  • Ag2CrO4photocatalyst shows the best activity in the photodegradation of a MB aqueous solution, because of the higher adsorption of MB molecules, shorter diffusion process of more photogenerated excitons, and stronger oxidation ability of the photogenerated holes. The current investigation may provide new insight into
PDF
Album
Full Research Paper
Published 19 May 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • exposure, whereas all the Ag–ZnO hybrid plasmonic nanostructures led to enhanced photodegradation for the same exposure time. Among the various Ag–ZnO photocatalysts used, sample AZ510 exhibited the highest photocatalytic efficiency of 94% for the same exposure time of 20 min. Figure 9c shows the results
  • can be clearly seen from that for the same citrate concentration, the photocatalytic efficiency increases with increasing Ag loading. Also, for the same Ag concentration, an increase in citrate concentration has been found to result in an increased efficiency of the photodegradation of MB. This
  • +]/[citrate] ratio of 1: 10, as photocatalysts. Schematic band diagram of Ag–ZnO hybrid nanostructure showing the charge redistribution processes that lead to the photocatalytic degradation of MB dye. (a,b) Kinetics of MB photodegradation by Ag–ZnO hybrid plasmonic nanostructures with different Ag
PDF
Album
Full Research Paper
Published 15 May 2014

Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

  • Subas K. Muduli,
  • Songling Wang,
  • Shi Chen,
  • Chin Fan Ng,
  • Cheng Hon Alfred Huan,
  • Tze Chien Sum and
  • Han Sen Soo

Beilstein J. Nanotechnol. 2014, 5, 517–523, doi:10.3762/bjnano.5.60

Graphical Abstract
  • the cerium oxide sample has been probed by the photodegradation of the suspected carcinogenic dye rhodamine B (RhB). A colloidal mixture of cerium oxide and RhB has been stirred and irradiated with AM 1.5 solar intensity light after equilibration in the dark for 30 min. A standard glass filter has
  • is most pronounced in the presence of the hole scavenger, with impaired activity in the presence of both •OH and •OOH/•O2− scavengers. Interestingly, the electron scavenger does not significantly affect the photodegradation experiments. The participation of •OH radicals was confirmed with the use of
PDF
Album
Supp Info
Letter
Published 24 Apr 2014

Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Neha Bhardwaj,
  • Jaspal Singh,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2013, 4, 763–770, doi:10.3762/bjnano.4.87

Graphical Abstract
  • UV–vis absorption spectroscopy. SEM and TEM studies revealed flower-like structures consisting of nanosheets, formed due to oriented attachment of ZnO nanoparticles. Flower-like ZnO structures showed enhanced photocatalytic activity towards sun-light driven photodegradation of methylene blue dye (MB
  • dyeing industries. Since the sun is an abundantly available natural energy source, its light can be conveniently utilized for the photodegradation of organic dyes [3][4][5][6][7][8]. ZnO with a band gap of 3.37 eV has received much attention for the complete mineralization and degradation of
  • did not result in any significant change in the absorption spectrum of MB. Figure 4d shows the extent of photodegradation of MB marked by the changes in C/C0 with irradiation time. Irradiation with sunlight for 20 min resulted in 92% degradation of MB when sample S1 was used, whereas by using sample
PDF
Album
Full Research Paper
Published 18 Nov 2013

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

  • Tanujjal Bora,
  • Karthik K. Lakshman,
  • Soumik Sarkar,
  • Abhinandan Makhal,
  • Samim Sardar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2013, 4, 714–725, doi:10.3762/bjnano.4.81

Graphical Abstract
  • molecules on ZnO nanostructures, a resonant defect-mediated energy transfer from the photo-excited ZnO nanostructures to the BR molecules induces their photodegradation [15]. It was also demonstrated that the system can effectively degrade BR when it is bound to albumin. Although literature related to the
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2013

Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

  • Jin-Ming Wu,
  • Igor Djerdj,
  • Till von Graberg and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2012, 3, 123–133, doi:10.3762/bjnano.3.13

Graphical Abstract
  • of the mesoporous films to assist the photodegradation of rhodamine B in water was studied. As a result, two maxima in the photocatalytic activity were identified in the calcination temperature range of 550–850 °C, peaking at 700 °C and 790 °C, and the origin of this was investigated by using
  • that, of all the various oxide films, the KLE derived mesoporous MgTa2O6 film possessed the highest activity in assisting the photodegradation of RhB in water. Interestingly, PIB6000-templated mesoporous MgTa2O6 thin film showed a very similar dye-degradation activity as compared with the KLE-templated
  • prolongs the lifetime of the photogenerated pairs, thus increasing the number of holes that are able to diffuse all the way to the surface to be involved in the photodegradation reaction. Small grains are assumed to facilitate the photocatalytic reaction, as it takes less time for the photogenerated pairs
PDF
Album
Supp Info
Video
Full Research Paper
Published 13 Feb 2012

Synthesis and catalytic applications of combined zeolitic/mesoporous materials

  • Jarian Vernimmen,
  • Vera Meynen and
  • Pegie Cool

Beilstein J. Nanotechnol. 2011, 2, 785–801, doi:10.3762/bjnano.2.87

Graphical Abstract
  • properties and their photocatalytic activity in photodegradation processes [169], TiO2 formation often needs to be avoided in the synthesis of Ti-containing nanoporous siliceous materials since its presence can be detrimental for the catalytic activity associated with tetrahedrally coordinated Ti [170][171
PDF
Album
Review
Published 30 Nov 2011
Other Beilstein-Institut Open Science Activities