Search results

Search for "polydimethylsiloxane (PDMS)" in Full Text gives 50 result(s) in Beilstein Journal of Nanotechnology.

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • ). Around the edges of the silicon wafer, the PLLA film was scraped off with a blade and the silicon wafer underneath the PLLA film was revealed (Figure 1d). A polydimethylsiloxane (PDMS) film was placed on top of the PLLA film serving as a flexible backing to assist in the separation of the polymer film
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • the structures were successfully transferred to a polydimethylsiloxane (PDMS) surface using a reverse nanoimprinting approach. The structured PDMS surface is coated with a thin Au film, and the final substrate is demonstrated as a surface-enhanced Raman spectroscopy (SERS) substrate. Rhodamine 6G (R6G
  • approaches. They produced arrays of tipless pyramids using an optical UV curing method. Lee et al. [24] used anodic aluminum oxide as a template for transferring patterns onto the polydimethylsiloxane (PDMS) substrate surfaces using a dry etching method. In this work, the detection of DNA molecules showed a
PDF
Album
Full Research Paper
Published 01 Nov 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol–gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by
  • thick silicon nitride layer using a laser interference lithographic (LIL) method. The topography of the master mold was replicated on a composite stamp consisting of two layers – hard polydimethylsiloxane (PDMS) and flexible 184 PDMS [31]. A 50 µm thick layer of hard PDMS and 2 mm thick layer of 184
PDF
Album
Letter
Published 12 May 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • highly flexible photonic crystal slabs by utilizing nanoreplication of a linear grating nanostructure with a period of 400 nm into a polydimethylsiloxane (PDMS) membrane and subsequent spin coating of titanium dioxide (TiO2) nanoparticles. Investigations with 300 nm and 500 nm gratings lead to similar
  • structure passes the polarization setup [20]. The light is then captured by the lens and directed from the microscope either to a spectrometer or a camera. Spectral information and photographs are recorded for all samples and all strain states. A 60 µm thick polydimethylsiloxane (PDMS) membrane with a 400
PDF
Album
Full Research Paper
Published 20 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • the surfaces could only be reproduced as small surfaces (ca 20 × 20 mm). These surfaces, made of polydimethylsiloxane (PDMS) were designed to provide transparent surfaces that would allow contact area to be visible through them as well as to provide standardised topographies whose specific dimensions
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • surface by disordering the surface structure and forming hydrogenated amorphous carbon [4]. Similarly, Ga+ irradiation of polydimethylsiloxane (PDMS) results in micro- and nanopatterns with controlled stiffness for potential applications in tissue engineering [5]. Overall, the properties depend on the
PDF
Album
Full Research Paper
Published 17 Nov 2016

Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

  • Anja Henning-Knechtel,
  • Matthew Wiens,
  • Mathias Lakatos,
  • Andreas Heerwig,
  • Frieder Ostermaier,
  • Nora Haufe and
  • Michael Mertig

Beilstein J. Nanotechnol. 2016, 7, 948–956, doi:10.3762/bjnano.7.87

Graphical Abstract
  • ·107 V/m [28][29][30]. A more precise deposition of 2D single layer and 3D multilayer DNA constructs required a higher frequency of approximately 12.5 MHz. This frequency range can be lowered when insulator-based dielectrophoresis is used [19]. In detail, an array of polydimethylsiloxane (PDMS) pillars
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016

Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane

  • Juan Carlos Castro Alcántara,
  • Mariana Cerda Zorrilla,
  • Lucia Cabriales,
  • Luis Manuel León Rossano and
  • Mathieu Hautefeuille

Beilstein J. Nanotechnol. 2015, 6, 744–748, doi:10.3762/bjnano.6.76

Graphical Abstract
  • residues in a low-cost polymer matrix with many interesting properties in optics and electronics micro-integration: polydimethylsiloxane (PDMS) [6]. In this work, we report the formation of bulk or localized carbon nanodomains obtained from PDMS, a silicon-based polymer by using two different methods
PDF
Album
Full Research Paper
Published 16 Mar 2015

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

  • Miao Yu,
  • Nico Strohmeyer,
  • Jinghe Wang,
  • Daniel J. Müller and
  • Jonne Helenius

Beilstein J. Nanotechnol. 2015, 6, 157–166, doi:10.3762/bjnano.6.15

Graphical Abstract
  • limitation, segmented polydimethylsiloxane (PDMS) masks were developed, allowing the measurement of cell adhesion to multiple substrates. To verify the utility of the masks, the adhesion of four different cell lines, HeLa (Kyoto), prostate cancer (PC), mouse kidney fibroblast and MDCK, to three extracellular
  • these approaches are uncommon in biological laboratories. In order to increase the throughput, we chose to modify Petri dishes using polydimethylsiloxane (PDMS) masks with four distinct areas (Figure 1D). The four segments separate the Petri dish surface into four independent 4 × 4 mm2 wells, which
PDF
Album
Full Research Paper
Published 14 Jan 2015

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • nano-patterned polydimethylsiloxane (PDMS) stamp. The luminescence of the isolated dots as a function of temperature increased upon the LS to HS spin transition and decreased as the LS state was restored at low temperatures. The synergy between luminescence and SCO properties in these hybrid systems
PDF
Album
Review
Published 25 Nov 2014

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • onto a Si wafer substrate (covered with 300 nm of SiO2) by using a polydimethylsiloxane (PDMS) microcontact printing method [8]. Other suitable types of substrates for the microcontact printing of these samples are glass, quartz, several types of plastics (like polyethylene, polypropylene foils and
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Influence of the PDMS substrate stiffness on the adhesion of Acanthamoeba castellanii

  • Sören B. Gutekunst,
  • Carsten Grabosch,
  • Alexander Kovalev,
  • Stanislav N. Gorb and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2014, 5, 1393–1398, doi:10.3762/bjnano.5.152

Graphical Abstract
  • cell adhesion area of A. castellanii trophozoites on polydimethylsiloxane (PDMS) substrates with different Young’s moduli (4 kPa, 29 kPa, and 128 kPa), we find significant differences in cell adhesion area as a function of substrate stiffness. In particular, the cell adhesion area of A. castellanii
  • polydimethylsiloxane (PDMS) substrates with Young’s moduli of 4 kPa, 29 kPa, and 128 kPa. These Young’s moduli were chosen in order to cover an elasticity range, for which a significant effect of substrate stiffness on the adhesion of mammalian cells has already been reported [1]. We systematically investigated the
  • the cellular microenvironment and associated nanobiomechanical cues also for the adhesion of a eukaryotic human pathogen. Experimental Preparation of polydimethylsiloxane (PDMS) substrates Silicone base and curing agent (Sylgard 184, DOW Corning) were mixed thoroughly in a ratio (m/m) of 80:1, 57:1
PDF
Album
Full Research Paper
Published 28 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • different characteristics of crystalline wax surfaces influence the attachment? We also measured adhesion (pull-off) forces of artificial adhesive systems on these surfaces. Here, tacky and deformable polydimethylsiloxane (PDMS) semi-spheres, having elasticity moduli similar to those of insect adhesive pads
PDF
Album
Full Research Paper
Published 14 Jul 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • control the scratch resistance of oxide surfaces. Titania films of several nm thickness are coated onto substrates of silicon, kapton, polycarbonate, and polydimethylsiloxane (PDMS). The scratch resistance measured by scanning force microscopy is found to be substrate dependent, diminishing in the order
  • polydimethylsiloxane (PDMS) using liquid phase deposition [34][35][36]. In this work, we further apply the technique to polycarbonate (PC) substrates, which are used in the lens industry and carry requirement of scratch/wear resistance. In addition to scratch and wear resistance, we demonstrate that the soft polymer
PDF
Album
Full Research Paper
Published 10 Jul 2014

The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

  • Burak Aksak,
  • Korhan Sahin and
  • Metin Sitti

Beilstein J. Nanotechnol. 2014, 5, 630–638, doi:10.3762/bjnano.5.74

Graphical Abstract
  • fiber arrays, respectively. The derivation of Equation 3 is detailed in Supporting Information File 1. Their experiments were carried out with polydimethylsiloxane (PDMS) cylindrical and mushroom-like fibers. For cylindrical fibers, a = 10 µm and h = 25 µm. The tip radius for mushroom–like fibers were
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2014

Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

  • Maria B. Wieland,
  • Anna G. Slater,
  • Barry Mangham,
  • Neil R. Champness and
  • Peter H. Beton

Beilstein J. Nanotechnol. 2014, 5, 394–401, doi:10.3762/bjnano.5.46

Graphical Abstract
  • onto the gold using a deposition rate of 1 nm/min. The samples were subsequently removed from UHV and a support layer of polydimethylsiloxane (PDMS) with a thickness of ≈1 mm was deposited from solution onto the samples (see the Experimental section). Mechanical peeling of the PDMS layer removes the
PDF
Album
Full Research Paper
Published 02 Apr 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • viscoelastic/plastic deformation, as well as capillary and adhesive forces. The analysis of AFM force–distance curves of polydimethylsiloxane (PDMS) showed a strong influence of the measurement conditions such as the loading–unloading rate and the dwell time, as well as intrinsic material properties like the
PDF
Album
Review
Published 29 Nov 2013

The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

  • Jinliang Zhuang,
  • Jasmin Friedel and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2012, 3, 570–578, doi:10.3762/bjnano.3.66

Graphical Abstract
  • printing (μCP) [49]. For this, a microstructured polydimethylsiloxane (PDMS) stamp was inked with 11-mercaptoundecanoic acid (MUDA) to transfer a pattern of 3 µm squares to the Au surface. The area surrounding the MUDA patterned parts was filled with 1-hexadecanethiol (HDT) by simple immersion in its
PDF
Album
Full Research Paper
Published 02 Aug 2012

Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

  • Jinzhang Liu,
  • Nunzio Motta and
  • Soonil Lee

Beilstein J. Nanotechnol. 2012, 3, 353–359, doi:10.3762/bjnano.3.41

Graphical Abstract
  • normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and
  • block the UV light. Moreover, carbon-based polymers undergo oxidation with ageing, and the degradation could be expedited by the absorption of UV light. In this paper, we report results of experiments on UV photodetectors based on a thin sheet of ZnO nanowires embedded in polydimethylsiloxane (PDMS
PDF
Album
Letter
Published 02 May 2012

Self-assembly of octadecyltrichlorosilane: Surface structures formed using different protocols of particle lithography

  • ChaMarra K. Saner,
  • Kathie L. Lusker,
  • Zorabel M. LeJeune,
  • Wilson K. Serem and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2012, 3, 114–122, doi:10.3762/bjnano.3.12

Graphical Abstract
  • polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was used to transfer OTS to the substrate through a physical mask of latex spheres. A drop (10–12 µL) of an OTS solution in bicyclohexyl was deposited onto a clean, dry block of PDMS (2 × 2 cm2). A 30 µL volume of a 40% v/v solution of OTS in bicyclohexyl was
PDF
Album
Full Research Paper
Published 09 Feb 2012

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • the membrane and the pressure cell, a layer of polydimethylsiloxane (PDMS) with a thickness of 2 mm was prepared on top of the pressure cell. The deflection at the center of the membrane was recorded by scanning the membrane with AFM in the contact mode. In the central-point method, the AFM tip was
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • hemispheres Polydimethylsiloxane (PDMS) from Dow Chemical was prepared using the elastomer and curing agent in a ratio of 10:1. The two components were mixed and air bubbles were removed by submitting the liquid to primary vacuum for 15 min. The cast of polymer beads was achieved by filling a cylindrical ring
  • . Spectra were normalized against the reference. Fabrication of arrays of metal film coated hemispheres. Main steps: (a) Preparation of 2D colloidal crystal; (b) cast of polydimethylsiloxane (PDMS); (c) detachment of substrate; (d) cast with epoxy resin; (e) PDMS detachment and (f) metal coating by physical
PDF
Album
Full Research Paper
Published 16 Aug 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • design than the native petals used as biological models. Xi and Jiang [23] replicated native rose petals with polydimethylsiloxane (PDMS), and fabricated surfaces that are topographically very similar to those of the original rose petals. However, their replicas possessed high adhesive forces to small (2
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

  • Glen McHale,
  • Michael I. Newton,
  • Neil J. Shirtcliffe and
  • Nicasio R. Geraldi

Beilstein J. Nanotechnol. 2011, 2, 145–151, doi:10.3762/bjnano.2.18

Graphical Abstract
  • = (κb/γLV)1/2 the solid can become deformed and shaped by the liquid. In practice, this effect has been given the name “capillary origami” based on experiments showing how films of polydimethylsiloxane (PDMS) shaped in two-dimensions can be folded by evaporating droplets of water to produce a designed
  • adhesive forces between liquids and solids both within capillary origami and granular systems. Effect of droplets of blue-dyed water on a thin polydimethylsiloxane (PDMS) membrane: a) droplet causing bending of the substrate, b) initial shaped substrate with the three score lines for folding, c) droplet
  • induced folding, and d) three-dimensional shape left after completion of evaporation. Effect of droplets of water on a thin polydimethylsiloxane (PDMS) membrane ribbon substrate hanging vertically: a) droplet causing a bending of the substrate which disappears as evaporation proceeds (three frames), b
PDF
Album
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities