Search results

Search for "porphyrin" in Full Text gives 61 result(s) in Beilstein Journal of Nanotechnology.

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • )porphyrin hydrogel) and PPy/FeTCPP/Co catalyst at 10 mA/cm2 current density, and in 0.1 M KOH, were 1.74 and 1.61 versus RHE, respectively (the catalyst loading equals to 0.3 mg/cm2) [55]. The analysis of , , and hydrogel catalysts in 1 M KOH for the OER process showed that the overpotential at a current
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • by Wu et al., Cu-based MOF nanosheets were utilized for CO2 reduction to formate and acetate (Figure 5a,b) [49]. The authors observed that Cu2+ nodes underwent conversion to copper oxides under operational conditions. The presence of these species, along with a porphyrin–Cu(II) complex, resulted in
  • efficiency of catalysts at various potentials, (d) Faradaic efficiency of catalysts as functions of the time. Figure 5 was adapted from [49]. (“Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO2 electroreduction”, © 2019 J.-X. Wu et al
PDF
Album
Review
Published 31 Aug 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • between the core unit and aliphatic chains. When the meso positions of porphyrins were substituted with normal saturated alkyl chains (P-N), the porphyrin plane and the alkyl chain units exhibited torsional strain, resulting in a tilt angle between the porphyrin core and the direction of the alkyl chain
  • extension (Figure 16a). However, the meso-alkyne-substituted porphyrin (P-A) could be co-planar (Figure 16b). Therefore, P-A could form fully covered monolayers, even at a lower concentrations than P-N. This result suggests that alkynyl linkers contribute more to the monolayer stabilization of porphyrin
  • representation of porphyrin substituted with (a) normal alkyl (P-N) and (b) alkynyl chains (P-A). The alkyl chains of P-N tend to extend in the solvent phase, whereas alkyne chains of P-A lead to a flat orientation. Figure 16 was adapted from [155], Copyright 2020 American Chemical Society. This content is not
PDF
Album
Review
Published 23 Aug 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • difficult to link units together in a controlled manner, as reactants are often activated simultaneously at a given temperature. Kawai, Ishikawa, Saito, and coworkers have developed a method to synthesize a multiblock copolymer of a porphyrin metal complex on a surface using trifluoromethyl (CF3
  • )-substituted 5,15-bis(10-bromoanthracen-9-yl)-10,20-bis(trifluoromethyl)porphyrin precursors (Figure 9) [125]. The ends of the formed oligomer preserve CF3 groups after the single-component oligomerization, further enabling sequential block coupling. After annealing the initially built copper porphyrin
  • . Sequential block oligomerization was actually demonstrated using cobalt porphyrin molecules and copper porphyrin oligomers upon annealing again at 210 °C. The block elongation was confirmed through the contrast difference of porphyrin centers (concave and convex), corresponding to Cu and Co porphyrin units
PDF
Album
Review
Published 03 Apr 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • porphyrin-based nanozymes were designed and successfully delivered to the TME with encapsulation by the melanoma B16F10M cell membrane [82]. They can generate •OH by catalyzing excess H2O2 to exert a toxic effect on tumor cells [82]. This precise delivery of anticancer modalities shows great significance
  • [111]. After absorbing energy, the ultrasound sensitizer exerts antitumor efficacy through various pathways, such as ROS generation, mechanical effects, thermal effects, and immune system-oriented efficacy [111][112]. Based on the diverse functions of SDT, Luo et al. synthesized porphyrin-based metal
PDF
Album
Review
Published 27 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • efficiency of ROS production is reduced through self-quenching. In order to solve this problem, CyDs are very useful. In Figure 7A, two permethylated β-CyD molecules were connected by a linker to form a β-CyD dimer (CD2), whereas a porphyrin was conjugated with two adamantine molecules (TPP-Ad2) [74]. From
  • encapsulating (a part of) the photosensitizer in the cavities, its self-aggregation was suppressed to accomplish a high quantum yield of 1O2 production. The aggregation of porphyrin was photocontrolled by using complex formation of β-CyD with photoresponsive azobenzene [78]. By delivering nitrogen oxide (NO
  • content is not subject to CC BY 4.0. PDT by nanoparticles formed from β-CyD dimers (CD2), porphyrin conjugated with two adamantine molecules (TPP-Ad2), and poly(ethylene glycol) bearing an adamantane moiety. Adapted with permission from [74]. Copyright 2020 American Chemical Society. This content is not
PDF
Album
Review
Published 09 Feb 2023

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • enantiodiscrimination. Porphyrin derivatives. Porphyrins and metalloporphyrins have been proposed to be suitable hosts for chirality sensing due to their functionalization at peripheral positions of the framework and easily monitoring of structural changes by strong optical absorptions [79][80][81]. They may also be
  • . reported a Ru-modified porphyrin as a chiral recognition host to achieve specific recognition of racemic isocyanides and alcohols [85]. Imai et al. and Hayashi et al. obtained chiral recognition of amino acids and peptides using Zn-modified porphyrins [86][87]. In general, the chirality of the porphyrin
  • -based supermolecular systems is generated either via the intrinsic chiral modification of achiral porphyrinoids or via the external chiral field. Supramolecular porphyrin films were also successfully used in QCM-based chirality-sensing systems. Paolesse et al. deposited a porphyrin diad layer as the
PDF
Album
Review
Published 27 Oct 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • screening induced by the porphyrin buffer layer, even with respect to that provided by a substrate of bulk C60. Conclusion In conclusion, the electronic and morphological properties of a single layer of C60 deposited on a ZnTPP/Fe(001)–p(1 × 1)O substrate have been investigated. The ZnTPP buffer layer
PDF
Album
Full Research Paper
Published 30 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • -layer growth technique coupled with the Langmuir–Blodgett method [143]. Both out-of-plane and in-plane orientations could be realized by using only two simple components (free-base porphyrin molecular building blocks and metal-ion joints without using pillaring units), suggesting the possibility to
PDF
Album
Review
Published 12 Aug 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • possibility to tune the magnetic anisotropy of a single porphyrin molecule by perturbing its ligand field with the STM probe [39][40]. These results not only suggest the importance of future manipulations experiments, but also shed new lights into the potential of decoupling atoms and molecules electronically
PDF
Album
Letter
Published 03 Jan 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • ) melanin through a Schiff base reaction to form an adhesive layer, and Fmoc-ʟ-Lys/DOPA fiber simulated an antenna to capture light. As a photosensitizer, Sn(IV)tetrakis(4-pyridyl)porphyrin (SnTPyP) was combined with the photocatalyst Co3O4 NPs by coordination bonds and electrostatic interaction onto the
PDF
Album
Review
Published 12 Oct 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • ligands attached to the metal center of the porphyrin were observed regardless of the type of surface (highly oriented pyrolytic graphite (HOPG) and Au surfaces were used), solvent (1-phenyloctane and n-tetradecane) and tip material (Pt/Ir, Au, and W), which indicates that the ligands have to be decoupled
  • these aspects for the self-assembly of porphyrin derivatives on cobalt oxide films on top of Ir(100). While the unfunctionalized diphenylporphyrin self-assembled on the bilayer film but not on the two-bilayer film, the opposite observation was made for cyanotetraphenylporphyrin. Physical decoupling of
PDF
Editorial
Published 23 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • ; oligonucleotides; porphyrin; silver nanoparticles; substrate modification; surface-enhanced Raman spectroscopy (SERS); Introduction Surface-enhanced Raman scattering (SERS) with its advantages of extreme sensitivity, high selectivity, and non-destructive nature has demonstrated great potential for the quick
  • analytes are depicted in Figure 4. The initially prepared plasmonic nanostructures yielded a rather intensive SERS signal for CuTMpyP4 bearing positive charge (Figure 5a, number 6). However, no spectrum was obtained for the negatively charged porphyrin CuTSPP4 (Figure 5b, number 6). Treatment of Ag NPs
  • increase of SERS intensity for the positively charged porphyrin (Figure 7a, number 3) whereas no spectra of anionic CuTSPP4 were observed. The result supports an earlier report about SERS activation by LiCl [23] and contradicts the authors’ statement that the effect does not depend on the surface charge
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • ) [13], thin layers of porphyrin molecules [14][15], and surface-anchored metal-organic frameworks (SURMOFs) [16][17]. For oxide surfaces it is known that the activation mechanism is based on reactive oxygen vacancies, which are locally created by electron-stimulated oxygen desorption [18][19]. Whereas
  • substrate. Consequently, EBISA is feasible on a SAM of TPT molecules with Fe(CO)5 but fails on the same substrate with Co(CO)3NO. This type of chemical selectivity was reported before on other substrates such as SURMOFs [16][17]. In contrast, on thin layers of porphyrin molecules EBISA was successful with
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • surfaces is of fundamental interest due to a variety of potential applications. We investigate here the molecule–molecule and molecule–substrate interaction of Co-5,15-diphenylporphyrin (Co-DPP) and 2H-tetrakis(p-cyanophenyl)porphyrin (2H-TCNP) on one bilayer (1BL) and two bilayer (2BL) thick cobalt oxide
  • cannot give rise to intermolecular forces anymore. The molecules employed in this study, Co-5,15-diphenylporphyrin (Co-DPP) and 2H-tetrakis(p-cyanophenyl)porphyrin (2H-TCNPP), are representatives with which this important hierarchy of interaction energies may be studied. While Co-DPP anchors mainly
  • % purity, Figure 1a) and 2H-TCNPP (2, Porphyrin Systems, 97% purity, Figure 1b) were evaporated from a graphite crucible effusion cell. Co-DPP was evaporated at a measured cell temperature of 540 K and 2H-TCNPP at 640 K, which resulted in a molecular deposition rate of 0.04 and 0.06 nm−2·min−1. Both
PDF
Album
Full Research Paper
Published 05 Oct 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • ascribed to the occurrence of redox reactions in which chloride is oxidized to chlorine and the Mn(III) center of the porphyrin moiety is reduced to Mn(II). The resulting Mn(II) porphyrin products were identified by UV–vis analysis of the liquid phase. For solutions of Mn(III) porphyrins with non-redox
  • manganese center of the porphyrin moiety serves as a coordination site for an oxygen atom, which subsequently is inserted into the double bond of the alkene. A variety of oxygen donors can be used to oxidize the manganese center to an active manganese-oxo (Mn=O) species, such as iodosylbenzene, hypochlorite
  • and hydrogen peroxide. The use of the environmentally most benign oxidant, molecular oxygen (O2), is also possible, but comes with a drawback. To be able to generate an Mn=O complex, the Mn(III) porphyrin first needs to be reduced to a Mn(II) porphyrin, which can subsequently coordinate to O2 and
PDF
Album
Full Research Paper
Published 24 Aug 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • visible spectra. An example of this is the porphyrin chlorin e6 (Ce6), which has been widely used as a photosensitizer in PDT [9][10][11][12][13]. One of the main drawbacks in the use of Ce6, and in general for any other organic photosensitizer materials, is the quenching after photoexcitation which
PDF
Album
Full Research Paper
Published 17 Jul 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • reducing power of glutathione (GSH) was exploited in a supramolecular micellar system formed through the host–guest interaction between a PEGylated cyclodextrin and adamantane moieties conjugated to a porphyrin photosensitizer through a disulfide bond. Once the disulfide link was cleaved by glutathione
  • , the porphyrin photosensitizer was released and the size of the nanoobjects in solution increased (Figure 5d) [77]. For a combined photodynamic therapy/photothermal therapy (PDT/PTT) approach, indocyanine green (ICG) has been encapsulated in a protein, namely human serum albumin. First human serum
  • hydrophobic central block was made of porphyrin molecules linked by disulfide groups; in the intracellular microenvironment the reduction by glutathione could activate the porphyrin molecules for PDT [88]. For self-assembled nanoparticles that are too labile and easily disassemble in vivo, cross-linking with
PDF
Album
Review
Published 15 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • ], Hélène [90], and co-workers reported the utility of porphyrin-tethered DNA as artificial nucleases. Murashima, Sugimoto, and co-workers adopted a novel approach to design DNA nanoarchitectures by substituting the nucleobases of DNA with porphyrins [91]. The tetraphenylporphyrin-modified nucleotide was
  • inserted into the center of a 13-mer oligonucleotide sequence in an automated DNA synthesizer through phosphoramidite chemistry. The annealing of porphyrin-tethered oligonucleotides with complementary oligonucleotides resulted in the formation of a B-form DNA duplex. The conformational distortion effect
  • due to the intercalation of porphyrin was neutralized via stabilization of the ensemble by stacking interactions that created the B-form duplex structure. Sitaula, Reed, and co-workers reported the ligation of a porphyrin derivative by a 19-nucleotide DNA sequence [92]. The porphyrin units were
PDF
Album
Review
Published 09 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • operate in the physiological range with suitable sensitivity. Another metal–organic framework (MOF) is studied in “The nanoscaled metal–organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy” [36]. Phosphinate-based MOF nanoparticles are decorated with porphyrin-type molecules as
  • photosensitizers for biological applications. In this work, it was found that the photodynamic efficacy of the system depends on the substituent at the porphyrin phosphinate groups. Environmental Hybrid nanomaterials may play a key role in the field of environmental research, in which environmental remediation and
PDF
Editorial
Published 20 Dec 2019

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • MNPs was oxidized by H2O2 to form an intermediate (Fe4+=O) and a porphyrin π-cation radical. The oxidized HRP was reduced by the mediator hydroquinone (HQ) forming benzoquinone (BQ), which was electrochemically reduced by accepting one electron from the electrode, with the enzyme returning to its
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • surface stress sensor as a novel nanomechanical device and a highly networked capsular nanoarchitecture of silica–porphyrin hybrid as the sensing material. Not limited to this particular case, innovations from both the device side and the materials side for improved sensors has been continuously pursued
PDF
Album
Review
Published 16 Oct 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • reported by Yan, Zhao and co-workers [128]. Other one-dimensional functional structures such as porphyrin-functionalized DNA (by Stulz [129]), DNA-based complex structures for ultrasensitive mercury detection (by Govindaraju and co-workers [130]), self-assembled chiral twisted and helical nanofibers (by
  • diffraction (GIXD) revealed a face-centred square grid structure with an average domain size of 3600 Å2. Makiura et al. employed a similar method to form multilayers of an oriented porphyrin-based MOF film on top of substrates by repeating transfer and washing of interfacially grown MOF layers (Figure 10
  • ) [228]. DHTPA was dissolved in water, and the resulted aqueous solution was layered on top of a chloroform solution of a tetra-substituted amine monomer containing porphyrin. The segregation of the monomers confined the imine formation to the interface and yielded wafer-size multilayer imine-linked COF
PDF
Album
Review
Published 30 Jul 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • technologies such as dye-sensitized solar cells. A key optimization parameter for such devices is the choice of the compounds in order to control the direction and the intensity of charge transfer across the interface. Here, the deposition of two different molecular dyes, porphyrin and coumarin, as single
  • Kelvin probe force microscopy measurements. Keywords: coumarin; Kelvin probe force microscopy; metal oxide; molecular resolution; nickel oxide (NiO); non-contact atomic force microscopy; porphyrin; Introduction With regard to its use in dye-sensitized solar cells (DSSCs), the wide-bandgap n-type
  • -carboxyphenyl)porphyrin (Cu-TCPP) has been studied for the fabrication of n-type DSSCs [21][22]. In contrast, Coumarin 343 (C343) is an electron acceptor and is used for the design of p-type devices [23][24]. Both molecules structures are shown in Figure 1b. In this paper, non-contact atomic force microscopy
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019
Other Beilstein-Institut Open Science Activities