Search results

Search for "pulsed laser" in Full Text gives 96 result(s) in Beilstein Journal of Nanotechnology.

Observation and analysis of structural changes in fused silica by continuous irradiation with femtosecond laser light having an energy density below the laser-induced damage threshold

  • Wataru Nomura,
  • Tadashi Kawazoe,
  • Takashi Yatsui,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2014, 5, 1334–1340, doi:10.3762/bjnano.5.146

Graphical Abstract
  • situ observation and analysis of an increase in scattering light intensity in fused silica substrates. In experiments conducted using a pulsed laser with a wavelength of 800 nm, a pulse width of 160 fs and pulse repetition rate of 1 kHz, we found that the scattered light intensity increased starting
  • method according to ISO 11254-2 [9][10], for example. With this method, 200 locations on a sample surface are irradiated with single shots of pulsed laser light having different energy densities. The presence/absence of damage sites due to the irradiation is visually checked, and the minimum energy
  • degradation in flat fused silica substrates, serving as the target material. The continuous irradiation with fs pulsed laser light has an energy density below the LIDT. We also analyzed the origin of the laser-induced degradation. Section 1 in Results and Discussion describes experiments in which we
PDF
Album
Full Research Paper
Published 21 Aug 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • -chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA
  • pulsed laser evaporation (MAPLE) processing has been applied to overcome several drawbacks of conventional solvent-based deposition techniques, such as inhomogeneous films, inaccurate placement of material, and difficult or erroneous thickness control [17][18]. MAPLE has been used to obtain thin films
  • polymeric microspheres. Thus, Socol et al., [43], firstly reported the novel deposition of PLGA–PVA, PLGA–PVA–BSA (bovine serum albumin) and PLGA–PVA–CS microspheres by matrix assisted pulsed laser evaporation (MAPLE) technique. SEM images of thin coatings reveal homogeneous and spherical-shaped particles
PDF
Album
Full Research Paper
Published 18 Jun 2014

Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

  • Federico Baiutti,
  • Georg Christiani and
  • Gennady Logvenov

Beilstein J. Nanotechnol. 2014, 5, 596–602, doi:10.3762/bjnano.5.70

Graphical Abstract
  • , pulsed laser deposition (PLD) and sputtering. On the other hand, obvious limitations to the thickness of the samples and uncertainties in the deposition rates of each element, which eventually result in an off-stoichiometric growth, need to be taken into account. Indeed, at the present day there is no in
PDF
Album
Review
Published 08 May 2014

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • (150 nm) of different shape as deposited from a solution. High resolution SEM images of Ag nanowires (diameter 120 nm) after pulsed laser annealing (a). Ag NPs of different size produced by laser annealing (b). Different models for the estimation of the contact area: facet area of a polyhedron for Au
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • of high field enhancement. These two techniques are variations of the same methods: The substrates carrying the nanostructures are irradiated with pulsed laser light. The ablation experiments are realized by using irradiation with femtosecond laser pulses, i.e., pulses shorter than the internal heat
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013

Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

  • Paul Kühler,
  • Daniel Puerto,
  • Mario Mosbacher,
  • Paul Leiderer,
  • Francisco Javier Garcia de Abajo,
  • Jan Siegel and
  • Javier Solis

Beilstein J. Nanotechnol. 2013, 4, 501–509, doi:10.3762/bjnano.4.59

Graphical Abstract
  • which allows us to conclude that our calculation of the maximum field enhancement expected (≈40) on the Si substrate for the particle size and irradiation geometry considered is quite accurate. When a pulsed laser of moderate fluence illuminates the surface, the local fluence close to the particle can
PDF
Album
Full Research Paper
Published 04 Sep 2013

Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films

  • Sebastian Schnurr,
  • Ulf Wiedwald,
  • Paul Ziemann,
  • Valeriy Y. Verchenko and
  • Andrei V. Shevelkov

Beilstein J. Nanotechnol. 2013, 4, 461–466, doi:10.3762/bjnano.4.54

Graphical Abstract
  • present work with hot-pressed pellets of FeGa3 and CoGa3, as well as of an Fe0.75Co0.25Ga3 solid solution, one faces the main problem of picking a deposition technique which conserves these starting chemical compositions. Previous experience suggested applying pulsed laser deposition (PLD) for that
PDF
Album
Full Research Paper
Published 31 Jul 2013

Ni nanocrystals on HOPG(0001): A scanning tunnelling microscope study

  • Michael Marz,
  • Keisuke Sagisaka and
  • Daisuke Fujita

Beilstein J. Nanotechnol. 2013, 4, 406–417, doi:10.3762/bjnano.4.48

Graphical Abstract
  • [7][8]. Various methods are employed for growing metallic clusters on surfaces such as ion sputtering [9], pulsed laser deposition [10], electro deposition [11][12][13], vapor deposition [14], aerosol deposition [15], material transfer of an STM tip [16], etc. For the formation of nanoparticles a
PDF
Album
Full Research Paper
Published 28 Jun 2013

Ferromagnetic behaviour of Fe-doped ZnO nanograined films

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Thomas Tietze,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2013, 4, 361–369, doi:10.3762/bjnano.4.42

Graphical Abstract
  • -beam sputter deposition or pulsed laser deposition (PLD) having small and very small grains are almost always ferromagnetic [22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47]. The respective (filled) points are grouping in the right part of the
PDF
Album
Full Research Paper
Published 13 Jun 2013

Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

  • Thomas Baumgärtel,
  • Christian von Borczyskowski and
  • Harald Graaf

Beilstein J. Nanotechnol. 2013, 4, 218–226, doi:10.3762/bjnano.4.22

Graphical Abstract
  • subsequent cleaning in ultrasonic baths of acetone, dichloromethane and ethanol. All silanization experiments were carried out at room temperature (21 °C). Fluorescence investigations of the samples were performed with a home-built microscope setup. The 465 nm excitation light from a pulsed laser diode (”LDH
PDF
Album
Full Research Paper
Published 25 Mar 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • ]. Alternatively, the VA-CNTs can be micromachined with the focused pulsed laser beams to produce columns with controlled size and shapes [75]. To conclude this part, the preparation of micropatterned VA-CNTs has been widely studied and significant advances in the methodology have been achieved in order to match
PDF
Album
Review
Published 22 Feb 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • pulsed laser excitation with a pulse length of about 50 ps. Figure 4c shows a typical lifetime measurement. A double exponential decay is observed. The initial fast decay is due to fast interband transitions of the metal and background fluorescence. The second slow decay is due to the color center. Table
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Tuning the properties of magnetic thin films by interaction with periodic nanostructures

  • Ulf Wiedwald,
  • Felix Haering,
  • Stefan Nau,
  • Carsten Schulze,
  • Herbert Schletter,
  • Denys Makarov,
  • Alfred Plettl,
  • Karsten Kuepper,
  • Manfred Albrecht,
  • Johannes Boneberg and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 831–842, doi:10.3762/bjnano.3.93

Graphical Abstract
  • . After the preparation of the non-close-packed PS nanostructure, subsequent growth of magnetic films can be carried out in standard deposition chambers under ultrahigh-vacuum conditions. The percolated magnetic films discussed below were deposited either by pulsed laser ablation (Fe films) or e-beam
PDF
Album
Full Research Paper
Published 07 Dec 2012

The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

  • César Moreno,
  • Carmen Munuera,
  • Xavier Obradors and
  • Carmen Ocal

Beilstein J. Nanotechnol. 2012, 3, 722–730, doi:10.3762/bjnano.3.82

Graphical Abstract
  • values of resistivity, magnetoresistance and Curie temperature are very similar to those observed in LSMO films grown by physical vapour-deposition techniques, such as sputtering or pulsed-laser deposition, leading us to conclude that a similar epitaxial quality is achieved with films grown by our CSD
PDF
Album
Full Research Paper
Published 06 Nov 2012

Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films

  • Anayara Begum,
  • Amir Hussain and
  • Atowar Rahman

Beilstein J. Nanotechnol. 2012, 3, 438–443, doi:10.3762/bjnano.3.50

Graphical Abstract
  • ], microwave heating [9], pulsed laser deposition [10], electrochemical atomic layer epitaxy [11], and electrodeposition [12], the chemical bath deposition method [13][14] is relatively simple and cost-effective, and has the advantage that it allows control over deposition parameters such as the pH, the
PDF
Album
Full Research Paper
Published 06 Jun 2012

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • obtained with elevated substrate temperature TS during deposition. At TS = 600 °C epitaxial growth was obtained on MgO(100) or STO(100) substrates [18][19][20], whereas deposition at ambient temperature led to textured growth of Pt films. Pulsed laser deposition (PLD) produced a similar result for the Pt
  • ) and (111) orientations were prepared on MgO(100) and STO(100) substrates by pulsed laser deposition. When deposited at elevated temperature (600 °C and above) epitaxial growth was achieved on STO(100) and MgO(100) with micron-sized atomically flat islands. When the deposition temperature was held at
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

  • Dong Wang,
  • Ran Ji and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2011, 2, 318–326, doi:10.3762/bjnano.2.37

Graphical Abstract
  • on the dewetting process of thin metal films on an inert substrate. Dewetting of metallic films on a substrate is driven by the reduction of the surface energy of the thin film and of the interface energy between the film and substrate, and can be induced by thermal annealing [9][10][11], pulsed
  • laser heating [12][13][14][15][16][17][18][19][20], ion irradiation [21][22][23][24], and electron irradiation [25]. Dewetting proceeds by surface diffusion even in the solid state well below the melting temperature of the film [9][10][11]. In addition, metals such as Ni, Ag, Co, and Au have a weak
PDF
Album
Video
Full Research Paper
Published 22 Jun 2011

Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

  • Mario Boehme,
  • Emanuel Ionescu,
  • Ganhua Fu and
  • Wolfgang Ensinger

Beilstein J. Nanotechnol. 2011, 2, 119–126, doi:10.3762/bjnano.2.14

Graphical Abstract
  • development of applications in optoelectronics, sensors and biomedical sciences [4][5][6]. Miscellaneous methods for the fabrication of ITO nanostructures, such as the post calcination method [7], alkaline hydrolysis [8] or pulsed laser ablation [9] have been developed and used. For fabricating metal
PDF
Album
Full Research Paper
Published 21 Feb 2011

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • composites are prepared by physical growth methods, such as sputtering [18][19], sequential pulsed laser deposition [20][21], sputtering gas aggregation [22] or mechanical milling [23]. In this work, we report a different approach to fabricate composite nanoparticle/thin-film materials, i.e., which combines
PDF
Album
Full Research Paper
Published 01 Dec 2010

Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles

  • Damien Alloyeau,
  • Christian Ricolleau,
  • Cyril Langlois,
  • Yann Le Bouar and
  • Annick Loiseau

Beilstein J. Nanotechnol. 2010, 1, 55–59, doi:10.3762/bjnano.1.7

Graphical Abstract
  • ONERA / CNRS, BP 72, 92322 Châtillon Cedex, France 10.3762/bjnano.1.7 Abstract We propose an original route to prepare magnetic alloy nanoparticles with uniform size and shape by using nanosecond annealing under pulsed laser irradiation. As demonstrated here on CoPt nanoparticles, flash laser annealing
  • ; nanosecond pulsed laser annealing; order-disorder transformation; Introduction Future high-density recording systems require 10 nm magnetic grains with a high magnetic anisotropy (Ku) to insure their thermal stability [1]. CoPt and FePt nanoparticles (NPs) in the chemically ordered L10 structure [2] are
  • reason, single NP analysis techniques are necessary to understand size effects on the NP properties [9][10][11]. In this article, we propose an original route to prepare CoPt bimetallic NPs with uniform size and shape by using nanosecond annealing with pulsed laser radiation at 248 nm. This technique has
PDF
Album
Full Research Paper
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • , in case of Pt, (111)-textured thin films (50 nm) were used which were obtained by pulsed laser deposition (PLD) at ambient temperature on MgO(001) or (100)-oriented films (80 nm) epitaxially grown by PLD on (001) strontium titanate (SrTiO3) crystals at 400 °C. In all cases, no special pre-treatment
  • nanoparticles on Pt films The approach of compensating diamagnetic substrate signals by paramagnetic films is demonstrated by paramagnetic Pt(111) films on top of MgO(001) substrates. Pt films were deposited under UHV conditions at ambient temperature by pulsed laser deposition (PLD). For this purpose a 193 nm
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities