Search results

Search for "resonators" in Full Text gives 65 result(s) in Beilstein Journal of Nanotechnology.

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • resonance and the excited state of photochromic molecules. By varying the width and the length of the nanorods independently, a clear Rabi splitting appears in the dispersion curves of both resonators. Keywords: active plasmonics; photochromic molecules; plasmon; Rabi splitting; strong coupling
  • ] allowed us to identify this behavior as a strong coupling regime, where the coincidence of the MC absorption band with the plasmonic regime leads to the formation of two distinct peaks and a so-called Rabi splitting [19]. The strong coupling regime is usually observed on high quality resonators as atoms
  • or cavities [15]. As plasmonic resonances are low quality resonators, the strong coupling regime has been mainly studied with molecular J-aggregates, exhibiting very sharp excitonic peaks [20][21]. Even if some studies have also used rhodamine 6G and metallic nanoparticles, which are both bad
PDF
Album
Full Research Paper
Published 08 Oct 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • boost of the quality factors in these Mie resonators. This peculiar feature holds great potential to further enhance light–matter interaction. For this reason, these systems are currently the subject of intense investigations and strategies to attain light absorption enhancement [21], nonlinear
PDF
Album
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • in everyday life. Herein, we review recent developments of gas sensors based on electrospun 1D nanostructures in different sensing platforms, including optical, conductometric and acoustic resonators. After explaining the principle of electrospinning, we classify sensors based on the type of
  • benefits and limitations for every approach. Keywords: 1D nanostructures; conductometric devices; electrospinning; gas sensors; optical sensors; resonators; Review 1 Introduction The monitoring and control of air pollutants, toxic gases and explosives has become increasingly important for human wellness
  • conductometric, acoustic resonators and optical). In addition, we provide concluding remarks and an outlook on this rapidly evolving research field on gas sensors based on electrospun 1D nanostructures. 2 Electrospinning The electrostatic effect was first described in 1600 by Willian Gilbert [44][45] through a
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • resolution [52]. Dichroic-sensitive cathodoluminescence imaging has also been used to study the chiral nature of the gold split-ring resonators on a TiO2 substrate [53]. Most studies have focused on nanoparticles on silicon substrates that can have a significant impact on the optical resonances of plasmonic
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure

  • Hadi Teguh Yudistira,
  • Shuo Liu,
  • Tie Jun Cui and
  • Han Zhang

Beilstein J. Nanotechnol. 2018, 9, 1437–1447, doi:10.3762/bjnano.9.136

Graphical Abstract
  • works on metamaterial absorbers have been presented such as split-ring resonators [15], electric-field-coupled (ELC) resonators [16], lossy cut-wire bars [17], and donut-type resonators [18]. Most previous works on the perfect absorber have been explained by interference theory [19][20][21][22][23], for
  • ]. Cut-wire and split-ring structures are often used as electric resonators that can control the permittivity of a metamaterial [26][27][28]. By using a cut-wire sandwich structure, the permeability can be controlled due to the existence of a looping surface current between the cut-wire structures. The
PDF
Album
Full Research Paper
Published 16 May 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • production cost is low and it is used as a white pigment in foods, cosmetics [12], textiles [13] and paints [14]. It has a relatively high refractive index of 2.3 at 550 nm [15] and recent work demonstrated its potential applications as novel optical material for waveguides and resonators [16][17][18][19][20
PDF
Album
Full Research Paper
Published 04 Apr 2018

Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna

  • Haitao Chen,
  • Mingkai Liu,
  • Lei Xu and
  • Dragomir N. Neshev

Beilstein J. Nanotechnol. 2018, 9, 780–788, doi:10.3762/bjnano.9.71

Graphical Abstract
  • do require antenna structures with very strong hot spots, such that the emission shows good directionality when the emitters are located at these spots. This might direct us to further improve our structures by introducing antenna shapes like bow-ties [52] or split-ring-resonators [37]. However, such
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2018

High-contrast and reversible scattering switching via hybrid metal-dielectric metasurfaces

  • Jonathan Ward,
  • Khosro Zangeneh Kamali,
  • Lei Xu,
  • Guoquan Zhang,
  • Andrey E. Miroshnichenko and
  • Mohsen Rahmani

Beilstein J. Nanotechnol. 2018, 9, 460–467, doi:10.3762/bjnano.9.44

Graphical Abstract
  • sensitive to the environment [8][9][46]. Therefore, the interference between adjacent resonators within our hybrid system strongly depends on the environment near the nanostructures, such as the volume and refractive index. By employing this sensitivity, we further control the optical response of the
PDF
Album
Full Research Paper
Published 06 Feb 2018

Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film

  • Gia Petriashvili,
  • Mauro Daniel Luigi Bruno,
  • Maria Penelope De Santo and
  • Riccardo Barberi

Beilstein J. Nanotechnol. 2018, 9, 379–383, doi:10.3762/bjnano.9.37

Graphical Abstract
  • − no is the birefringence of the liquid crystal. The PBG spectral position is sensitive to external or internal factors as electric and electromagnetic fields, temperature and local order variations [1][2][3][4]. Due to the presence of a PBG, CLCs behave as Bragg resonators that can be used to build up
PDF
Album
Full Research Paper
Published 31 Jan 2018

Design of photonic microcavities in hexagonal boron nitride

  • Sejeong Kim,
  • Milos Toth and
  • Igor Aharonovich

Beilstein J. Nanotechnol. 2018, 9, 102–108, doi:10.3762/bjnano.9.12

Graphical Abstract
  • applications. Two dimensional (2D) hBN flakes contain quantum emitters which are ultra-bright and photostable at room temperature. To achieve optimal coupling of these emitters to optical resonators, fabrication of cavities from hBN is therefore required to maximize the overlap between cavity optical modes and
  • -resonators such as a high chemical stability and an excellent thermal conductivity [22][23]. In this work, we propose to use hBN for the fabrication of photonic crystal cavities (PCCs). We design two dimensional (2D) PCCs and show that they have high quality-factor (Q-factor) resonances in the visible
  • . Photonic crystal cavities with line defects can be described as Fabry–Pérot resonators [29]. Hence, the Q-factor can be enhanced by increasing the cavity length as for a Fabry–Pérot resonator [30], which can be tuned by varying number of missing air holes. Figure 2a shows the Q-factors of L3, L7, and L11
PDF
Album
Letter
Published 09 Jan 2018

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
  • control by logic cells. Corresponding power save mechanisms cannot be realized in RQL. In addition, one should mention RF losses in microstrip resonators, which typically make up to 50% of the total power budget even at relatively low frequencies. The total power dissipation of RQL and ERSFQ circuits in
PDF
Album
Review
Published 14 Dec 2017

Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis

  • Omur E. Dagdeviren and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2017, 8, 657–666, doi:10.3762/bjnano.8.70

Graphical Abstract
  • information, when a conducting probe is attached to the end of the oscillator [5][6][7][8][9][10][11]. Towards this end, microfabricated cantilevers [15][16][17], length-extension resonators [18][19][20], and quartz tuning forks in the so-called “qPlus” configuration, in which one of the prongs of the fork is
PDF
Album
Full Research Paper
Published 20 Mar 2017

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • was shown that these higher modes can be more sensitive to material properties such as elastic modulus and damping coefficients [17][18][19]. Additionally, stiff cantilevers have proven to provide high resolution imaging in ambient and liquid environments using quartz resonators [20][21]. Traditional
PDF
Album
Full Research Paper
Published 06 Feb 2017

Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS) equipment

  • Ann-Kathrin Kleinschmidt,
  • Lars Barzen,
  • Johannes Strassner,
  • Christoph Doering,
  • Henning Fouckhardt,
  • Wolfgang Bock,
  • Michael Wahl and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2016, 7, 1783–1793, doi:10.3762/bjnano.7.171

Graphical Abstract
  • range of photon energies between approx. 1.5 and 5.0 eV. Since layered samples optically represent coupled Fabry–Perot resonators, interferometric information can also be extracted from parts of the spectrum (for not too small wavelengths). Fabry–Perot oscillations can be observed with changing layer
PDF
Album
Full Research Paper
Published 21 Nov 2016

A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

  • Kamil Moldosanov and
  • Andrei Postnikov

Beilstein J. Nanotechnol. 2016, 7, 983–989, doi:10.3762/bjnano.7.90

Graphical Abstract
  • [17][18], a tunneling of acoustic phonons across nanoscale gaps became an issue of priority. Meanwhile, already in 2010 Beardsley et al. [19] described a working 0.44 THz saser (on the basis of semiconductor superlattices). It seems that metallic nanobars/nanorings supposed to serve as resonators for
PDF
Album
Full Research Paper
Published 06 Jul 2016

Noncontact atomic force microscopy III

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2016, 7, 946–947, doi:10.3762/bjnano.7.86

Graphical Abstract
  • resonators for NC-AFM operation in air. In addition, the ever increasing importance of simulations for dynamic AFM experiments is underlined via two contributions focusing on three-dimensional viscoelastic modeling as well as “sub-atomic” contrast formation on the prototypical Si(111)-7×7 surface. To
PDF
Editorial
Published 30 Jun 2016

Optical absorption signature of a self-assembled dye monolayer on graphene

  • Tessnim Sghaier,
  • Sylvain Le Liepvre,
  • Céline Fiorini,
  • Ludovic Douillard and
  • Fabrice Charra

Beilstein J. Nanotechnol. 2016, 7, 862–868, doi:10.3762/bjnano.7.78

Graphical Abstract
  • shifted H-bands are formed, corresponding to collectively excited states and energy bands of delocalized excitons [4][5]. The giant transition dipole moments associated with such excitations result in enhanced optical interactions, e.g., with plasmon resonators in which case a strong-coupling regime can
PDF
Album
Letter
Published 14 Jun 2016

Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

  • Chamanei Perera,
  • Kristy Vernon,
  • Elliot Cheng,
  • Juna Sathian,
  • Esa Jaatinen and
  • Timothy Davis

Beilstein J. Nanotechnol. 2016, 7, 751–757, doi:10.3762/bjnano.7.66

Graphical Abstract
  • highly sensitive to the surrounding dielectric environment. This unique property is incredibly useful in sensing applications. Mach–Zehnder (MZ) interferometry [1][2][3][4][5], surface enhanced Raman spectroscopy (SERS) [6][7][8][9], ring resonators [10] and surface plasmon resonance (SPR) [11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2016

Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress

  • Chang-Wan Kim,
  • Mai Duc Dai and
  • Kilho Eom

Beilstein J. Nanotechnol. 2016, 7, 685–696, doi:10.3762/bjnano.7.61

Graphical Abstract
  • effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between
  • graphene resonators for their mass sensing applications. Keywords: edge stress; graphene resonator; mass sensing; nonlinear vibration; size effect; sensitivity; Introduction Recent advances in nanotechnology have allowed for the development of nano-electro-mechanical system (NEMS) devices that can
  • -frequency dynamic range of nanomechanical resonators has enabled them to be used for development of lab-on-a-chip mass spectrometry [7][8]. For the recent decade, graphene, which is an atomically thin sheet made of carbon atoms, has been highlighted due to its excellent electrical [9][10][11] and mechanical
PDF
Album
Full Research Paper
Published 09 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • microdisc resonators, was readily detectable through changes in the effective refractive index of the waveguide setup and the concomitant shifts in the resonant wavelength of the sensor cavity, with signal amplification through label-free enzyme-linked immunosorbent assay (ELISA) [134]. The sensor system
PDF
Album
Review
Published 25 Apr 2016

Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations

  • Alberto Nocera,
  • Carmine Antonio Perroni,
  • Vincenzo Marigliano Ramaglia and
  • Vittorio Cataudella

Beilstein J. Nanotechnol. 2016, 7, 439–464, doi:10.3762/bjnano.7.39

Graphical Abstract
  • mechanical resonance making single-parameter adiabatic charge pumping feasible in carbon nanotube resonators. The pumping mechanism that we observe is different from that acting in the two parameter pumping and, instead, it is based on an important dynamic adjustment of the mechanical motion of the nanotube
  • electronic and vibrational degrees of freedom. Nanoelectromechanical systems (NEMS) are devices similar to molecular junctions. Typically, they consist of a nanobeam resonator that is coupled to an electronic quantum dot junction. Famous examples of NEMS are suspended carbon nanotube (CNT) resonators, which
PDF
Album
Review
Published 18 Mar 2016

Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

  • Hannes Beyer,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 432–438, doi:10.3762/bjnano.7.38

Graphical Abstract
  • avoid stability issues such as “jump-to-contact” while working with small amplitudes, sensors with a high stiffness, e.g., short cantilevers, quartz tuning forks, or length-extension resonators are required [3]. In UHV tuning forks have outperformed conventional cantilevers because the high stiffness (k
  • resonance frequency. Results and Discussion Experiment We use unpackaged length-extension resonators (Microcrystal, Switzerland) and solder both gold electrodes at the base of the sensor to conductive tracks on a piece of a circuit board (Figure 1a). The latter is glued to an L-shaped metal piece, which in
PDF
Album
Full Research Paper
Published 15 Mar 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • reported by Sivis et al. [69] proved that the observed phenomenon is in fact connected to enhanced atomic line emission rather than higher harmonic generation. Another very convincing experiment was performed by Niesler and co-workers in 2009 [60]. The authors fabricated split-ring resonators on top of a
  • concept of tensorial nonlinear optics, based on effective media, does not hold, as our systems in fact consist of a 2D array of optical resonators of wavelength dimensions. Also, the structures exhibit significant surface roughness, which might be responsible for the observed signals. Such a signal would
PDF
Album
Full Research Paper
Published 26 Jan 2016

Optimization of phase contrast in bimodal amplitude modulation AFM

  • Mehrnoosh Damircheli,
  • Amir F. Payam and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 1072–1081, doi:10.3762/bjnano.6.108

Graphical Abstract
  • agreement with experimental observations [36]. The presence of dissipation reduces the phase shift for the same A1/A01-ratio (see Figure 2). Energy dissipation in the sample softens the resonance curves which in turns reduces the phase shift. This is a common feature of resonators that is not affected by
PDF
Album
Full Research Paper
Published 28 Apr 2015

Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

  • Jana Vlachová,
  • Rebekka König and
  • Diethelm Johannsmann

Beilstein J. Nanotechnol. 2015, 6, 845–856, doi:10.3762/bjnano.6.87

Graphical Abstract
  • experimental error. In particular, there were no systematic differences between increasing and decreasing ramps. Occasionally, a slow drift was superimposed onto the ramps. Quartz resonators respond to changes in temperature and static stress with slow drifts. Drifts can be reduced by mounting the crystals in
  • of the amplitudes, in particular) see [10]. Experiments were carried out with either SiO2-coated resonators (purchased from Inficon) or PMMA-coated resonators. The thickness of the spin-cast PMMA layer was 250 nm. Previous experiments did not find evidence of an influence of the thickness of a glassy
PDF
Album
Full Research Paper
Published 30 Mar 2015
Other Beilstein-Institut Open Science Activities