Search results

Search for "surface science" in Full Text gives 81 result(s) in Beilstein Journal of Nanotechnology.

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
PDF
Album
Perspective
Published 10 Nov 2025

Mechanical property measurements enabled by short-term Fourier-transform of atomic force microscopy thermal deflection analysis

  • Thomas Mathias,
  • Roland Bennewitz and
  • Philip Egberts

Beilstein J. Nanotechnol. 2025, 16, 1952–1962, doi:10.3762/bjnano.16.136

Graphical Abstract
  • ); mechanical property measurements; surface science; Introduction Atomic force microscopy (AFM) has become an indispensable tool for imaging the surface topography on a variety of surfaces [1]. Since the invention of the AFM [2], several other modes of AFM have been developed, including friction force
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2025

Ambient pressure XPS at MAX IV

  • Mattia Scardamaglia,
  • Ulrike Küst,
  • Alexander Klyushin,
  • Rosemary Jones,
  • Jan Knudsen,
  • Robert Temperton,
  • Andrey Shavorskiy and
  • Esko Kokkonen

Beilstein J. Nanotechnol. 2025, 16, 1677–1694, doi:10.3762/bjnano.16.118

Graphical Abstract
  • representative studies at MAX IV, including investigations of single-atom catalysts, confined catalysis, time-resolved catalysis, atomic layer deposition, and electrochemical interfaces, showcasing the role of APXPS in advancing material and surface science. Keywords: 2D materials; atomic layer deposition
  • spectroscopy (XPS) is a powerful surface science technique that enables the investigation of modifications in the chemical environment of a sample surface and its electronic states, owing to its exceptional surface sensitivity. However, the requirement for ultrahigh vacuum (UHV) conditions previously limited
  • new research fields with respect to traditional surface science, such as corrosion and battery research, with specifically designed electrochemical cells suitable for APXPS measurements [8]. The SPECIES & HIPPIE beamlines SPECIES is a soft X-ray beamline on the 1.5 GeV ring. It covers a wide photon
PDF
Album
Review
Published 24 Sep 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2025

Tendency in tip polarity changes in non-contact atomic force microscopy imaging on a fluorite surface

  • Bob Kyeyune,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 944–950, doi:10.3762/bjnano.16.72

Graphical Abstract
  • . Keywords: atomic resolution imaging; calcium fluoride surface; interaction force; non-contact atomic force microscopy (NC-AFM); tip change; Introduction Non-contact atomic force microscopy (NC-AFM) [1] is a surface science tool that has been used to atomically resolve surfaces of semiconductor and
PDF
Album
Full Research Paper
Published 26 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • , thin films, and supported nanostructures, investigated using laboratory-based surface science methods, we refer the reader to existing reviews [18][19][20]. The aim of this work is to provide an overview of recent studies highlighting the advantages of using synchrotron and FEL radiation to achieve a
  • 125 eV corresponding to the maximum of the Ce 4d→4f giant resonance (on-resonance), while spectra (a) and (c) have been excited with a photon energy of 110 eV (off-resonance). Reprinted from [23], Surface Science, vol. 520, by S. Eck; C. Castellarin-Cudia; S. Surnev; M. G. Ramsey; F. P. Netzer
  • ) Evolution of the Zr4+ 3d5/2 intensity as a function of photon exposure time for a Ce0.4Zr0.6O2−x and a ZrO2 film. Adapted from [39], Surface Science, vol. 682, by M. Allan; D. Grinter; S. Dhaliwal; C. Muryn; T. Forrest; F. Maccherozzi; S.S. Dhesi; G. Thornton, “Redox behaviour of a ceria–zirconia inverse
PDF
Album
Review
Published 10 Jun 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • not suitable for modern-day applications. In material science as well as surface science applications, the ion source should be mobile and adaptable to the vacuum system, having a longer lifetime. Further, the ion source should produce a relatively high beam current (i.e., capable of forming a high
PDF
Album
Full Research Paper
Published 31 Mar 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • itself once the first closed layer is formed. In another series of surface-science-oriented works, the sticking coefficient has been studied for small organic molecules, such as allyl methyl ether on Si(100) [17], trimethylamine on Si(001) [18], tetrahydrofuran on Si(001) [19], and benzene on Pt(111) [20
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • 10.3762/bjnano.15.115 Abstract Ion beam-induced deposition (IBID) using Pt(CO)2Cl2 and Pt(CO)2Br2 as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed
  • ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors. Keywords: deposition; ion beam; nanostructure; organometallic; precursor; Introduction
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • the formation mechanism of the interfacial silver layer deserves further in-depth studies, which are beyond the scope of this article. These studies would involve surface science approaches using mass spectrometry and/or other spectroscopic techniques, such as X-ray photoelectron spectroscopy, and
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • new precursor for focused electron beam-induced deposition (FEBID), was investigated by surface science experiments under UHV conditions. Auger electron spectroscopy was used to monitor deposit formation. The comparison between Fe(CO)4MA and Fe(CO)5 revealed the effect of the modified ligand
  • phase [30][31][32][33][34], of clusters of the precursor [35][36][37][38], or of Fe(CO)5 adsorbed on surfaces [27][39][40][41][42][43] with the aim to provide insight into the chemical reactions inherent in the FEBID process. A recent surface science study was performed on Fe(CO)5 adsorbed on a Au
  • deposit. The present study uses a surface science approach to investigate the electron-induced decomposition of Fe(CO)4MA and the composition of the deposits resulting from experiments that mimic different FEBID processes. All experiments were repeated under the same conditions using Fe(CO)5 to elucidate
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • , during its epitaxial growth in surface science experiments or its fabrication for applications, defects, that is, deviations from the ideal 2D lattice, inevitably occur. Examples for defects are vacancies, interstitial atoms, grain boundaries, stacking faults or wrinkles [5][6][7][8][9][10][11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • -vacuum (UHV) surface science studies and mass spectrometry in high-vacuum (HV) gas-phase investigations [27][28]. In this context, surface science experiments allow for electron-dose-dependent studies of the elemental composition of the deposit, and desorbing ligands may be monitored by means of mass
  • spectrometry. On the other hand, gas-phase studies using controllable, quasi-monoenergetic electron beams under single collision conditions, provide information on the electron energy dependence and extent of the individual fragmentation processes [28]. A number of such comparative gas-phase and surface
  • science studies have been carried out in the past using a 500 eV flood gun in the surface studies [29][30], and also in combination with higher energy FEBID studies [30][31]. In a recent study [32], we took a similar approach and investigated (CH3)AuP(CH3)3 as a potential gold precursor for FEBID. We used
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • attachment of NHCs to gold and the properties of the corresponding monolayers have been studied using conventional surface science techniques under ultrahigh-vacuum conditions [13][14]. NHC monolayers have also been used in applications such as surface-enhanced Raman spectroscopy and surface plasmon
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • ] and is known for more than thousand years [3], but after the Lotus effect publication [4], this research led to a paradigm shift in surface science [5] and was the starting point for novel technologies in surface science [5]. Today many products in forms of coatings, sprays and paints providing
PDF
Album
Full Research Paper
Published 21 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • -based AFM may have lost the attention of the surface science and UHV AFM communities, possibly because of the ease of operation of tuning fork-based AFM and the availability of the corresponding instruments from various manufacturers. Here, we present the design of a robust and easy-to-use cantilever
  • as shown in Figure 1. The preparation chamber is equipped with various ports for the attachment of evaporators, a sputter gun, and surface science analytical tools. A rotatable coolable linear manipulator with two sample/cantilever receivers is used to transport sample and cantilever holders to the
PDF
Album
Full Research Paper
Published 11 Oct 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • electron transmission study. Relative contributions of individual ionic species obtained through DEA and DI of Mo(CO)6 and the average CO loss per incident are calculated and compared to the composition of the FEBID deposits produced. These are also compared to gas phase, surface science and deposition
  • deposits composition with carbonyl loss through DEA vs DI. We compare this to previous gas phase, surface science and FEBID experiments on W(CO)6 and discuss these studies in context to the current findings and potential deposition mechanisms. Method Quantum chemical calculations Similar to the approach in
  • schematically in the Graphical Abstract accompanying this article. Though admittedly speculative, this may explain the very different findings in surface science studies. The surface science studies are conducted under non-steady-state conditions, where few monolayers are exposed to 500 eV electrons from a
PDF
Album
Full Research Paper
Published 04 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • coordinated threefold with surface tin (Sn 5f); 4-oxygen coordinated fivefold with surface tin (Sn 5f). Figure 4b was reprinted from [53], Surface Science, vol. 577, by Mäki-Jaskari, M. A.; Rantala, T. T.; Golovanov, V. V. “Computational study of charge accumulation at SnO2(110) surface”, pages 127–138
  • . (c) Transient photocurrent response and (d) EIS curves of SnO2 and SnO2/GQDs (1%) under visible light illumination and in darkness. Figure 13 was reprinted from [36], Applied Surface Science, vol. 448, by Xie, Y.; Yu, S.; Zhong, Y.; Zhang, Q.; Zhou, Y. “SnO2/graphene quantum dots composited
PDF
Album
Review
Published 21 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • Rouhollah Khodadust Ozlem Unal Havva Yagci Acar Koc University, Department of Chemistry, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, Istanbul, Turkey University of Health Science, Health Science Institute, Department of Biotechnology Selimiye Mahallesi, Tıbbiye
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • amorphous substrates, for example, amorphous silica or amorphous carbon, which are commonly used in FEBID and surface science experiments. The structure of precursor molecules, their interaction with a substrate, and the dynamics of nanostructure formation and growth are influenced by interatomic
  • the whole simulated surface). The latter case is relevant for surface science experiments on irradiation of thin films of adsorbed precursor molecules. The yields of SE and BSE and the corresponding spatial distributions depend on the energy of the PE beam and the material of a substrate. These
PDF
Album
Full Research Paper
Published 13 Oct 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • layer; molecular self-assembly; scanning probe microscopy; surface science; Over the past two decades, organic molecules adsorbed on atomically defined metal surfaces have been intensively studied to obtain an in-depth understanding of their self-assembly behavior, on-surface reactivity, as well as
  • dielectric layers on top of the surface [34][35] or a chemical modification of the surface to saturate the dangling bonds. In surface-science-based studies, for the latter approach hydrogenation of semiconductor surfaces is frequently applied as effective passivation against chemisorption of adsorbates [36
  • molecules for performing insightful fundamental surface-science-based studies on them and, thus, play a crucial role in designing new molecule-based electronic and optoelectronic devices. Sabine Maier and Meike Stöhr Erlangen and Groningen, July 2021 Acknowledgements We would like to thank all the authors
PDF
Editorial
Published 23 Aug 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • the sample. Nevertheless, the contamination from solvent introduction can be reduced down to conditions compatible with high-resolution scanning probe microscopy (SPM) techniques [10][12]. Buckminsterfullerene C60, scheme in Figure 1b, is among the most extensively studied molecules in surface science
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • , resulting in quasi free-standing graphene layers [18]. Alkali halide layers are frequently used as decoupling layers in surface science [19][20][21][22]. They are reported to form single- or double-layer islands with a typical cubic structure on single-crystalline transition metal surfaces [23][24
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021
Other Beilstein-Institut Open Science Activities