Search results

Search for "titania" in Full Text gives 84 result(s) in Beilstein Journal of Nanotechnology.

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • single layer TiO2 (30 nm) was sputter-deposited from a titania source. For electroforming-free devices (described below), a bilayer was used consisting of TiO2−x (30 nm) and TiO2 (5 nm), where the thicker oxygen deficient layer was sputter deposited from a Ti4O7 Magnéli phase target and the thinner
  • stoichiometric layer was again deposited from a stoichiometric titania target. Device junction areas studied included 1.5 × 1.5 μm2 and 3 × 3 μm2. The device area is defined by the overlap of the bottom and top electrode. X-ray diffraction (XRD) and selected area electron diffraction (SAED) showed that the
PDF
Album
Full Research Paper
Published 07 Aug 2013

Nanostructure-directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction

  • James L. Gole and
  • William Laminack

Beilstein J. Nanotechnol. 2013, 4, 20–31, doi:10.3762/bjnano.4.3

Graphical Abstract
  • are readily oxidized to SnOx (x = 2,4) and CuxO (x = 1,2) as demonstrated by XPS measurements [23]. The initially introduced titania (anatase) may be crystalline; however, we cannot be certain of this crystallinity after deposition to the PS interface. The untreated PS hybrid structures are exposed to
PDF
Album
Review
Published 14 Jan 2013

FTIR nanobiosensors for Escherichia coli detection

  • Stefania Mura,
  • Gianfranco Greppi,
  • Maria Laura Marongiu,
  • Pier Paolo Roggero,
  • Sandeep P. Ravindranath,
  • Lisa J. Mauer,
  • Nicoletta Schibeci,
  • Francesco Perria,
  • Massimo Piccinini,
  • Plinio Innocenzi and
  • Joseph Irudayaraj

Beilstein J. Nanotechnol. 2012, 3, 485–492, doi:10.3762/bjnano.3.55

Graphical Abstract
  • necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyl)triethoxysilane) and GA (glutaraldehyde) were functionalized with specific antibodies and the
  • ) oriented (one side polished and one side etched) were obtained from Jocam (Italy). Film preparation Titania (TiO2) thin films were prepared by dipping silicon wafers in a solution composed of TiCl4/Pluronic F127/H2O/EtOH (1:0.005:10:40) under controlled conditions of temperature and RH (relative humidity
  • −1. The final calcination process to remove the organic template of these stabilized coatings was conducted at 350 °C for 3.5 h in air under static conditions at a heating rate of 10 °C·min−1. In this way mesoporous titania thin films were obtained and characterized as described in a previous work of
PDF
Album
Full Research Paper
Published 03 Jul 2012

Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification

  • Inbal Aped,
  • Yacov Mazuz and
  • Chaim N. Sukenik

Beilstein J. Nanotechnol. 2012, 3, 213–220, doi:10.3762/bjnano.3.24

Graphical Abstract
  • the thioesters. The full exploitation of these systems in ways that take full advantage of the tunable wetting and that can extend the patterned titania deposition previously reported [16] will be the subject of future investigations. Trichlorosilyl thioesters. Thickness and contact angles (advancing
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • monolayers may affect the photocatalytic properties of titania as well as be affected by these properties. Likewise, the superhydrophilicity of TiO2 known to be induced upon exposure to UV light [13] may affect the chemisorption process of SAMs. This gives rise to diverse phenomena, which can be utilized in
  • therefore one could imagine that SAMs on titania may resemble SAMs on silica. This similarity is expected to be manifested primarily by the type of head groups that connect between the surface and the organic tails. Indeed, head groups such as chlorosilanes (RnSiCl4–n with n = 1,2,3), alkoxysilanes (RnSi(OR
  • ')4–n with n = 1,2,3), carboxylic acids and isocyanates (–N=C=O) are common on both substrates. The fact that the Si–O bond length in silica (1.5–1.7 Å depending on the crystalline form) is similar to that of the Ti–O bond length in titania (1.9 Å) may suggest similar compactness. On the other hand
PDF
Album
Review
Published 20 Dec 2011

Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

  • Jörg J. Schneider,
  • Meike Naumann,
  • Christian Schäfer,
  • Armin Brandner,
  • Heiko J. Hofmann and
  • Peter Claus

Beilstein J. Nanotechnol. 2011, 2, 776–784, doi:10.3762/bjnano.2.86

Graphical Abstract
  • ceria and other electron deficient metal oxides, such as zirconia [30][31] and titania [33], are active in direct carboxylation of methanol to DMC, they are also easily deactivated, sometimes already before recycling experiments can be started, resulting in only marginal methanol conversion. It can be
PDF
Album
Full Research Paper
Published 30 Nov 2011
Graphical Abstract
  • exploited to functionalize the nanograss film with three representative species, namely porphyrin, Au nanoparticles and titania. Of particular note, the novel silica@titania composite nanograss surface demonstrated the ability to convert its wetting behavior between the extreme states (superhydrophobic
  • –superhydrophilic) by surface hydrophobic treatment and UV irradiation. The anatase titania component in the nanograss film acts as a highly efficient photocatalyst for the decomposition of the low-surface-energy organic components attached to the nanosurface. The ease with which the nanostructure can be controlled
  • (anatase titania). The silica@titania composite nanosurface exhibited an extreme change in photoresponsive wettability due to the presence of photocatalytic anatase titania, which can decompose hydrophobic organic components bonded to the surface. Results and Discussion The inner wall of a soda-lime glass
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • (9.45 mmol) in 1.36 mL hydrochloric acid (conc.), resulting in a clear TiO2 sol. After an aging period of 60 min at room temperature, the sol was spin-coated on the precleaned Si substrates with a spinning speed of 4000 rpm (for 280 nm thickness) for 30 s. To vary the film thickness of the titania films
  • calcination in air at 350 °C for 3 h, with a ramp rate of 1 K min−1. For the N2 sorption and inductively coupled plasma ionization spectroscopy (ICP–OES) measurements, a larger quantity of the titania material was needed: The remaining coating solution was cast in petri dishes and aged analogously to the thin
  • /TiO2 film yielded statistically relevant data. The surface area and the pore diameter of the titania (cast TiO2 material, different batches) was determined by N2 sorption measurements (Autosorb MP1 and Quadrasorb, Quantachrome). The specific surface area was calculated using the Brunauer–Emmett–Teller
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • semiconductor undergo redox reactions with molecules adsorbed onto the surface, thereby breaking them into smaller fragments. Photocatalysis with metal-oxide-semiconductor nanostructures has been an area of intense research over the last couple of decades with titania (TiO2) receiving the most attention [1][2
  • sites arising from oxygen nonstoichiometry, has emerged to be an efficient photocatalyst material compared to other metal oxides [8][9][10]. ZnO exhibits comparatively higher reaction and mineralization rates [11] and can generate hydroxyl ions more efficiently than titania (TiO2) [12]. Surface area and
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities