Search results

Search for "wear" in Full Text gives 89 result(s) in Beilstein Journal of Nanotechnology.

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • applications in liquids requiring controlled manipulation and targeting. On the macroscale, nanoparticles in solids and liquids have been shown to reduce friction and wear. On the nanoscale, atomic force microscopy (AFM) studies have been performed in single- and multiple-nanoparticle contact, in dry
  • environments, to characterize friction forces and wear. However, limited studies in submerged liquid environments have been performed and further studies are needed. In this paper, spherical Au nanoparticles were studied for their effect on friction and wear under dry conditions and submerged in water. In
  • single-nanoparticle contact, individual nanoparticles, deposited on silicon, were manipulated with a sharp tip and the friction force was determined. Multiple-nanoparticle contact sliding experiments were performed on nanoparticle-coated silicon with a glass sphere. Wear tests were performed on the
PDF
Album
Full Research Paper
Published 15 Nov 2012

Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

  • Bharat Bhushan,
  • Si Chen and
  • Shirong Ge

Beilstein J. Nanotechnol. 2012, 3, 731–746, doi:10.3762/bjnano.3.83

Graphical Abstract
  • skin samples. The reduction is similar to that on the nanoscale, since skin cream is a shear-thinning fluid as mentioned earlier. Figure 9b shows that the coefficient of friction decreases as the normal load increases. Increased surface roughening and a large quantity of wear debris are believed to be
  • increased surface roughening and a large quantity of wear debris. The coefficient of friction of pig skin is larger than that of rat skin on the nanoscale. The effect of velocity, normal load, and relative humidity on pig skin has the same trend as that for rat skin both on the nano- and macroscale, as does
PDF
Album
Full Research Paper
Published 08 Nov 2012

The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

  • César Moreno,
  • Carmen Munuera,
  • Xavier Obradors and
  • Carmen Ocal

Beilstein J. Nanotechnol. 2012, 3, 722–730, doi:10.3762/bjnano.3.82

Graphical Abstract
  • resistive-switching effect to nanoscale devices. It is worth mentioning here that, by comparing Figure 5a and Figure 5f we can rule out any tip effects in I–V measurements due to tip contamination or coating wear. The nonmodified regions of the LSMO films serve as an in situ quality test of the tip
PDF
Album
Full Research Paper
Published 06 Nov 2012

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • scanning force microscopy (SFM) techniques allow not only the imaging of the topography of surfaces but also the spatially resolved study of surface properties, such as the electrical, elastic, tribological and wear properties [11][12][13][14][15][16][17][18][19][20][21][22][23]. At the same time, scanning
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Nanotribology at high temperatures

  • Saurav Goel,
  • Alexander Stukowski,
  • Gaurav Goel,
  • Xichun Luo and
  • Robert L. Reuben

Beilstein J. Nanotechnol. 2012, 3, 586–588, doi:10.3762/bjnano.3.68

Graphical Abstract
  • friction and nearly zero wear [1]. Recent research, however, has shown a steep rise in the grazing friction during wearless sliding, primarily attributed to the adhesion between the interacting surfaces [2]. A major assumption in the atomistic simulation associated with this finding was the consideration
  • when it is rubbed against low carbon ferrous alloys and pure iron [7]. A hypothesis was proposed by Paul et al. [8] ascribing the rapid chemical wear of diamond tips to the presence of unpaired d-shell electrons in the substrate. Utilizing this proposition, a research group from Bremen University
  • more categorically against low carbon ferrous alloys. The wear of the diamond tip will change the contact area which will alter the frictional force as the latter depends linearly on the number of atoms that chemically interact across the surface [10]. Then, the question arises as to what other options
PDF
Album
Commentary
Published 15 Aug 2012

Combining nanoscale manipulation with macroscale relocation of single quantum dots

  • Francesca Paola Quacquarelli,
  • Richard A. J. Woolley,
  • Martin Humphry,
  • Jasbiner Chauhan,
  • Philip J. Moriarty and
  • Ashley Cadby

Beilstein J. Nanotechnol. 2012, 3, 324–328, doi:10.3762/bjnano.3.36

Graphical Abstract
  • , we can ascertain the minimum amount of surface–tip contact force required for the manipulation to take place; reducing tip wear and image degradation. Tip state also plays an important role in the manipulation process, and the automatic characterisation and optimization of the AFM tip apex would be
PDF
Album
Letter
Published 10 Apr 2012

Direct-write polymer nanolithography in ultra-high vacuum

  • Woo-Kyung Lee,
  • Minchul Yang,
  • Arnaldo R. Laracuente,
  • William P. King,
  • Lloyd J. Whitman and
  • Paul E. Sheehan

Beilstein J. Nanotechnol. 2012, 3, 52–56, doi:10.3762/bjnano.3.6

Graphical Abstract
  • silicon tip. Note that recent advances – where the tips remain sharp due to a coating of wear-resistant diamond – readily show line thicknesses of 40 nm [17]. The line width and heights were measured as a function of the probe speed (Figure 3). The heights of the deposited polymer structures roughly
PDF
Album
Letter
Published 19 Jan 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
PDF
Album
Review
Published 20 Dec 2011

Self-assembly at solid surfaces

  • Sidney R. Cohen and
  • Jacob Sagiv

Beilstein J. Nanotechnol. 2011, 2, 824–825, doi:10.3762/bjnano.2.91

Graphical Abstract
  • examination, prevention of spreading of liquids, friction and wear reduction, and surface passivation and protection. Whereas the early study of such monolayers indeed attracted considerable attention over the years, perhaps their greatest impact was yet to come, in new directions of research that could not
PDF
Editorial
Published 20 Dec 2011

Formation of SiC nanoparticles in an atmospheric microwave plasma

  • Martin Vennekamp,
  • Ingolf Bauer,
  • Matthias Groh,
  • Evgeni Sperling,
  • Susanne Ueberlein,
  • Maksym Myndyk,
  • Gerrit Mäder and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 665–673, doi:10.3762/bjnano.2.71

Graphical Abstract
  • size is mainly influenced by the concentration of the precursor material in the plasma. Keywords: atmospheric microwave plasma; nanoparticle; SiC; Introduction Silicon Carbide (SiC) is a solid with various applications in materials science. It is used, e.g., as a wear-resistant material, as a
PDF
Album
Video
Full Research Paper
Published 07 Oct 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • different types of particle motion during manipulation, such as sliding, rolling, stick-slip and spinning, is crucial since the mode of motion of particles determines the energy loss and wear in the contacting surfaces. In this paper, the sensitivity of those critical parameters on the mobility of gold
PDF
Album
Full Research Paper
Published 04 Feb 2011

Review of "Contact Mechanics and Friction: Physical Principles and Applications" by Valentin L. Popov

  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 57–58, doi:10.3762/bjnano.2.7

Graphical Abstract
  • ) nanomachines: micro and nano-actuators, (8) frictionally induced vibrations, (9) thermal effects in contacts, (10) lubricated systems, (11) viscoelastic properties and friction of elastomers, (12) wear. The book is an excellent example of interdisciplinary science because it uses approaches from physics
PDF
Book Report
Published 25 Jan 2011

The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

  • W. Merlijn van Spengen,
  • Viviane Turq and
  • Joost W. M. Frenken

Beilstein J. Nanotechnol. 2010, 1, 163–171, doi:10.3762/bjnano.1.20

Graphical Abstract
  • and wear problems [12]. The question is now how to describe friction on the larger scale of actual MEMS devices, which pair micrometer features and nanometer-scale surface roughness with nano- to micro-Newton forces. This friction is characterized by irregular, but repeatable, stick-slip motion. Can
  • surface asperities [26]. The static shear strength itself is determined by OH-bridging forces between the surfaces, direct chemical Si–O–Si bonds between the surfaces (the rupturing of these bonds leads to wear of the surfaces in the long run), and/or possibly liquid water meniscus strain or even gluing
  • an average over 1000 scans. The fact that the slips appear sharp means that there was no significant change to their position over these 1000 scans and hence no surface changes (which would indicate wear). [Reprinted with permission from van Spengen, W. M.; Frenken, J. W. M. Tribol. Lett. 2007, 28
PDF
Album
Full Research Paper
Published 22 Dec 2010

Scanning probe microscopy and related methods

  • Ernst Meyer

Beilstein J. Nanotechnol. 2010, 1, 155–157, doi:10.3762/bjnano.1.18

Graphical Abstract
  • gives insight into fascinating phenomena, such as metal-superconductor transitions or metal-insulator transitions. Another important development is related to nanomechanics, where phenomena, such as friction, wear, elasticity and plasticity are studied on an atomic scale. Atomic friction has been
  • information about the local bonding and to explore friction and wear mechanisms. Two different regimes were observed, which were related to the commensurability of the contacts [9]. The manipulation of a large number of particles gives also access to the size and shapes of the particles [10] and is discussed
PDF
Album
Editorial
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities