Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

Axel G. Griesbeck and Melissa Reckenthäler
Beilstein J. Org. Chem. 2014, 10, 1143–1150. https://doi.org/10.3762/bjoc.10.114

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 238.1 KB Download

Cite the Following Article

Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects
Axel G. Griesbeck and Melissa Reckenthäler
Beilstein J. Org. Chem. 2014, 10, 1143–1150. https://doi.org/10.3762/bjoc.10.114

How to Cite

Griesbeck, A. G.; Reckenthäler, M. Beilstein J. Org. Chem. 2014, 10, 1143–1150. doi:10.3762/bjoc.10.114

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, Y.-M.; Wang, J.-B.; Huang, J.; Cui, Z.-S.; Zhang, M.; Zhang, Z.-H. Molybdenum disulfide-catalyzed direct α-hydroxymethylation of amides employing methanol as a sustainable C1 source under photoirradiation. Journal of Catalysis 2023, 427, 115100. doi:10.1016/j.jcat.2023.115100
  • Wang, Y.-M.; Wang, J.-B.; Huang, J.; Cui, Z.-S.; Zhang, M.; Zhang, Z.-H. Molybdenum Disulfide-Catalyzed Direct Α-Hydroxymethylation of Amides Employing Methanol as a Sustainable C1 Source Under Photoirradiation. Elsevier BV 2023. doi:10.2139/ssrn.4502509
  • Chowdhury, S.; Kumar, A.; Kumar, A. Electrocatalytic Hydrogenation and Reductive Coupling of Aryl Ketones: Highly efficient Straightforward Metal‐Free Access to Alcohols and Pinacols. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202200425
  • Juliá, F. Ligand‐to‐Metal Charge Transfer (LMCT) Photochemistry at 3d‐Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem 2022, 14. doi:10.1002/cctc.202200916
  • Guo, F.; Wang, H.; Ye, X.; Tan, C. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202200326
  • Yamane, M.; Kanzaki, Y.; Mitsunuma, H.; Kanai, M. Titanium(IV) Chloride-Catalyzed Photoalkylation via C(sp3)-H Bond Activation of Alkanes. Organic letters 2022, 24, 1486–1490. doi:10.1021/acs.orglett.2c00138
  • Nassar, Y.; Piva, O. Photoredox-catalyzed hydroxymethylation of β-ketoesters: application to the synthesis of [3.3.3] propellane lactones. Organic & biomolecular chemistry 2021, 19, 9251–9259. doi:10.1039/d1ob01712h
  • Crites, C.-O. L.; de Mendonça, F. G.; Netto-Ferreira, J. C.; Baker, R. T.; Hallett-Tapley, G. L.; Tremblay, L. Exploiting the photocatalytic activity of TiO2 towards the depolymerization of Kraft lignin. New Journal of Chemistry 2021, 45, 15371–15377. doi:10.1039/d1nj03043d
  • de Gracia Retamosa, M.; Döndaş, H. A.; Sobhani, S.; Nájera, C.; Yus, M.; Sansano, J. M. Photocatalytic Homocoupling Transformations. Synthesis 2021, 53, 3653–3672. doi:10.1055/a-1517-7329
  • Sandoval-Pauker, C.; Molina-Aguirre, G.; Pinter, B. Status report on copper (I) complexes in photoredox catalysis; photophysical and electrochemical properties and future prospects. Polyhedron 2021, 199, 115105. doi:10.1016/j.poly.2021.115105
  • Gao, Z.; Luo, N.; Huang, Z.; Taylor, S. H.; Wang, F. Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols. ACS Sustainable Chemistry & Engineering 2021, 9, 6188–6202. doi:10.1021/acssuschemeng.1c01066
  • Nassar, Y.; Piva, O. Design, Synthesis, and Evaluation of α-(Hydroxymethyl)cycloalkanols. European Journal of Organic Chemistry 2021, 2021, 1037–1054. doi:10.1002/ejoc.202001297
  • Fujita, M.; Kobayashi, F.; Ide, T.; Egami, H.; Hamashima, Y. Oxidative and Redox-Neutral Approaches to Symmetrical Diamines and Diols by Single Electron Transfer/Hydrogen Atom Transfer Synergistic Catalysis. European Journal of Organic Chemistry 2020, 2020, 7151–7155. doi:10.1002/ejoc.202001329
  • Nassar, Y.; Piva, O. A short route to access oxaspiro[n,3,3]propellanes. Organic & biomolecular chemistry 2020, 18, 5811–5815. doi:10.1039/d0ob01169j
  • Han, G.; Liu, X.-W.; Cao, Z.; Sun, Y. Photocatalytic Pinacol C–C Coupling and Jet Fuel Precursor Production on ZnIn2S4 Nanosheets. ACS Catalysis 2020, 10, 9346–9355. doi:10.1021/acscatal.0c01715
  • Geng, P.; Tang, Y.; Pan, G.; Wang, W.; Hu, J.; Cai, Y. A g-C3N4-based heterogeneous photocatalyst for visible light mediated aerobic benzylic C–H oxygenations. Green Chemistry 2019, 21, 6116–6122. doi:10.1039/c9gc02870f
  • Cai, Y.; Tang, Y.; Fan, L.; Lefebvre, Q.; Hou, H.; Rueping, M. Heterogeneous Visible-Light Photoredox Catalysis with Graphitic Carbon Nitride for α-Aminoalkyl Radical Additions, Allylations, and Heteroarylations. ACS Catalysis 2018, 8, 9471–9476. doi:10.1021/acscatal.8b02937
  • Sultan, S.; Gupta, V. K.; Shah, B. A. Photoredox‐Catalyzed Isatin Reactions: Access to Dibenzo‐1,7‐Naphthyridine Carboxylate and Tryptanthrin. ChemPhotoChem 2017, 1, 120–124. doi:10.1002/cptc.201700028
  • Ma, J.; Harms, K.; Meggers, E. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols. Chemical communications (Cambridge, England) 2016, 52, 10183–10186. doi:10.1039/c6cc04397f
  • Fava, E.; Nakajima, M.; Nguyen, A. L. P.; Rueping, M. Photoredox-Catalyzed Ketyl-Olefin Coupling for the Synthesis of Substituted Chromanols. The Journal of organic chemistry 2016, 81, 6959–6964. doi:10.1021/acs.joc.6b01006
Other Beilstein-Institut Open Science Activities