Multivalent scaffolds induce galectin-3 aggregation into nanoparticles

Candace K. Goodman, Mark L. Wolfenden, Pratima Nangia-Makker, Anna K. Michel, Avraham Raz and Mary J. Cloninger
Beilstein J. Org. Chem. 2014, 10, 1570–1577.

Supporting Information

Supporting Information File 1: Amounts of reagents used in glycodendrimer syntheses; characterization data for glycodendrimers; sample calculations; detailed protocols for galectin-3 isolation and solution and sample preparations; sample NMR spectra; characterization data for glycodendrimer aggregates.
Format: PDF Size: 494.6 KB Download

Cite the Following Article

Multivalent scaffolds induce galectin-3 aggregation into nanoparticles
Candace K. Goodman, Mark L. Wolfenden, Pratima Nangia-Makker, Anna K. Michel, Avraham Raz and Mary J. Cloninger
Beilstein J. Org. Chem. 2014, 10, 1570–1577.

How to Cite

Goodman, C. K.; Wolfenden, M. L.; Nangia-Makker, P.; Michel, A. K.; Raz, A.; Cloninger, M. J. Beilstein J. Org. Chem. 2014, 10, 1570–1577. doi:10.3762/bjoc.10.162

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Martínez-Bailén, M.; Rojo, J.; Ramos-Soriano, J. Multivalent glycosystems for human lectins. Chemical Society reviews 2023, 52, 536–572. doi:10.1039/d2cs00736c
  • Ou, C.; Li, C.; Feng, C.; Tong, X.; Vasta, G. R.; Wang, L.-X. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorganic & medicinal chemistry 2022, 72, 116974. doi:10.1016/j.bmc.2022.116974
  • VanKoten, H. W.; Moore, R. S.; Cloninger, M. J. Nanoparticles To Study Lectins in Caenorhabditis elegans: Multivalent Galactose β1-4 Fucose-Functionalized Dendrimers Provide Protection from Oxidative Stress. Biomacromolecules 2021, 22, 4720–4729. doi:10.1021/acs.biomac.1c01001
  • Bernhard, S. P.; Goodman, C.; Norton, E. G.; Alme, D. G.; Lawrence, C. M.; Cloninger, M. J. Time-Dependent Fluorescence Spectroscopy to Quantify Complex Binding Interactions. ACS omega 2020, 5, 29017–29024. doi:10.1021/acsomega.0c03416
  • Chen, J.; Wang, L.; Yang, Y.; Xu, M.; Xie, J.; Liu, P. Optimized synthesis of selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 2020, 196, 79–85. doi:10.1080/10426507.2020.1802275
  • Freichel, T.; Heine, V.; Laaf, D.; Mackintosh, E. E.; Sarafova, S. D.; Elling, L.; Snyder, N. L.; Hartmann, L. Sequence-Defined Heteromultivalent Precision Glycomacromolecules Bearing Sulfonated/Sulfated Nonglycosidic Moieties Preferentially Bind Galectin-3 and Delay Wound Healing of a Galectin-3 Positive Tumor Cell Line in an In Vitro Wound Scratch Assay. Macromolecular bioscience 2020, 20, 2000163. doi:10.1002/mabi.202000163
  • Bernhard, S. P.; Fricke, M. S.; Haag, R.; Cloninger, M. J. Protein aggregation nucleated by functionalized dendritic polyglycerols. Polymer chemistry 2020, 11, 3849–3862. doi:10.1039/d0py00667j
  • Martos-Maldonado, M. C.; Quesada-Soriano, I.; García-Fuentes, L.; Vargas-Berenguel, A. Multivalent Lactose–Ferrocene Conjugates Based on Poly(Amido Amine) Dendrimers and Gold Nanoparticles as Electrochemical Probes for Sensing Galectin-3. Nanomaterials (Basel, Switzerland) 2020, 10, 203. doi:10.3390/nano10020203
  • Gilson, R. C.; Gunasinghe, S. D.; Johannes, L.; Gaus, K. Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Progress in lipid research 2019, 76, 101010. doi:10.1016/j.plipres.2019.101010
  • Freichel, T.; Laaf, D.; Hoffmann, M.; Konietzny, P. B.; Heine, V.; Wawrzinek, R.; Rademacher, C.; Snyder, N. L.; Elling, L.; Hartmann, L. Effects of linker and liposome anchoring on lactose-functionalized glycomacromolecules as multivalent ligands for binding galectin-3. RSC advances 2019, 9, 23484–23497. doi:10.1039/c9ra05497a
  • Mauceri, A.; Giansanti, L.; Bozzuto, G.; Condello, M.; Molinari, A.; Galantini, L.; Piozzi, A.; Mancini, G. Structurally related glucosylated liposomes: Correlation of physicochemical and biological features. Biochimica et biophysica acta. Biomembranes 2019, 1861, 1468–1475. doi:10.1016/j.bbamem.2019.06.003
  • Fettis, M. M.; Farhadi, S. A.; Hudalla, G. A. A chimeric, multivalent assembly of galectin-1 and galectin-3 with enhanced extracellular activity. Biomaterials science 2019, 7, 1852–1862. doi:10.1039/c8bm01631c
  • Ennist, J. H.; Termuehlen, H. R.; Bernhard, S. P.; Fricke, M. S.; Cloninger, M. J. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjugate chemistry 2018, 29, 4030–4039. doi:10.1021/acs.bioconjchem.8b00599
  • Laaf, D.; Bojarová, P.; Elling, L.; Křen, V. Galectin-Carbohydrate Interactions in Biomedicine and Biotechnology. Trends in biotechnology 2018, 37, 402–415. doi:10.1016/j.tibtech.2018.10.001
  • Flores-Ibarra, A.; Vértesy, S.; Medrano, F. J.; Gabius, H.-J.; Romero, A. A. Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Scientific reports 2018, 8, 9835. doi:10.1038/s41598-018-28235-x
  • Harvey, D. Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for 2013–2014. Mass spectrometry reviews 2018, 37, 353–491. doi:10.1002/mas.21530
  • VanKoten, H. W. Ph.D. Thesis, Jan 1, 2018; pp 1–166.
  • Stel, M.; Pieters, R. J. Multivalency; Wiley, 2017; pp 345–380. doi:10.1002/9781119143505.ch14
  • Salvadó, M.; Reina, J. J.; Rojo, J.; Castillón, S.; Boutureira, O. Topological Defects in Hyperbranched Glycopolymers Enhance Binding to Lectins. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 15790–15794. doi:10.1002/chem.201703432
  • Sandoval-Altamirano, C.; Sanchez, S. A.; Ferreyra, N. F.; Günther, G. Understanding the interaction of concanavalin a with mannosyl glycoliposomes: A surface plasmon resonance and fluorescence study. Colloids and surfaces. B, Biointerfaces 2017, 158, 539–546. doi:10.1016/j.colsurfb.2017.07.026
Other Beilstein-Institut Open Science Activities