The chemoenzymatic synthesis of clofarabine and related 2′-deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by E. coli nucleoside phosphorylases

Ilja V. Fateev, Konstantin V. Antonov, Irina D. Konstantinova, Tatyana I. Muravyova, Frank Seela, Roman S. Esipov, Anatoly I. Miroshnikov and Igor A. Mikhailopulo
Beilstein J. Org. Chem. 2014, 10, 1657–1669. https://doi.org/10.3762/bjoc.10.173

Supporting Information

Supporting Information File 1: Detailed analysis of the NMR data, geometry optimizations, and HPLC and mass spectrometry data.
Format: PDF Size: 494.8 KB Download

Cite the Following Article

The chemoenzymatic synthesis of clofarabine and related 2′-deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by E. coli nucleoside phosphorylases
Ilja V. Fateev, Konstantin V. Antonov, Irina D. Konstantinova, Tatyana I. Muravyova, Frank Seela, Roman S. Esipov, Anatoly I. Miroshnikov and Igor A. Mikhailopulo
Beilstein J. Org. Chem. 2014, 10, 1657–1669. https://doi.org/10.3762/bjoc.10.173

How to Cite

Fateev, I. V.; Antonov, K. V.; Konstantinova, I. D.; Muravyova, T. I.; Seela, F.; Esipov, R. S.; Miroshnikov, A. I.; Mikhailopulo, I. A. Beilstein J. Org. Chem. 2014, 10, 1657–1669. doi:10.3762/bjoc.10.173

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Eletskaya, B. Z.; Berzina, M. Y.; Fateev, I. V.; Kayushin, A. L.; Dorofeeva, E. V.; Lutonina, O. I.; Zorina, E. A.; Antonov, K. V.; Paramonov, A. S.; Muzyka, I. S.; Zhukova, O. S.; Kiselevskiy, M. V.; Miroshnikov, A. I.; Esipov, R. S.; Konstantinova, I. D. Enzymatic Synthesis of 2-Chloropurine Arabinonucleosides with Chiral Amino Acid Amides at the C6 Position and an Evaluation of Antiproliferative Activity In Vitro. International journal of molecular sciences 2023, 24, 6223. doi:10.3390/ijms24076223
  • Smirnova, O. S.; Berzina, M. Y.; Fateev, I. V.; Eletskaya, B. Z.; Kostromina, M. A.; Kaushin, A. L.; Paramonov, A. S.; Prutkov, A. N.; Matveev, A. V.; Grebenkina, L. E.; Chudinov, M. V.; Andronova, V. L.; Galegov, G. A.; Deryabin, P. G.; Miroshnikov, A. I.; Esipov, R. S.; Konstantinova, I. D. Chemo-enzymatic synthesis of 5-substituted ribavirin analogs: Unexpected cooperative effect in the interaction of 5-alkyloxymethyl 1,2,4-triazol-3-carboxamides with E. coli purine nucleoside phosphorylase active site. Sustainable Chemistry and Pharmacy 2022, 30, 100881. doi:10.1016/j.scp.2022.100881
  • Zayats, E. A.; Fateev, I. V.; Kostromina, M. A.; Abramchik, Y. A.; Lykoshin, D. D.; Yurovskaya, D. O.; Timofeev, V. I.; Berzina, M. Y.; Eletskaya, B. Z.; Konstantinova, I. D.; Esipov, R. S. Rational Mutagenesis in the Lid Domain of Ribokinase from E. coli Results in an Order of Magnitude Increase in Activity towards D-arabinose. International journal of molecular sciences 2022, 23, 12540. doi:10.3390/ijms232012540
  • Grebenkina, L. E.; Prutkov, A. N.; Matveev, A. V.; Chudinov, M. V. Synthesis of 5-oxymethyl-1,2,4-triazole-3-carboxamides. Fine Chemical Technologies 2022, 17, 311–322. doi:10.32362/2410-6593-2022-17-4-311-322
  • Sivets, A.; Sivets, G. Syntheses of Clofarabine and Related C2′-β-fluorinated Nucleoside Analogues. Journal of New Developments in Chemistry 2022, 3, 14–28. doi:10.14302/issn.2377-2549.jndc-22-4277
  • doi:10.1002/9781118995167.ch6
  • Smirnova, O. S.; Fateev, I. V.; Berzina, M. Y.; Eletskaya, B. Z.; Kostromina, M. A.; Kayushin, A. L.; Paramonov, A. S.; Prutkov, A. N.; Matveev, A. V.; Grebenkina, L. E.; Chudinov, M. V.; Andronova, V. L.; Galegov, G. A.; Deryabin, P. G.; Miroshnikov, A. I.; Esipov, R. S.; Konstantinova, I. D. Chemo-Enzymatic Synthesis of 5-Substituted Ribavirin Analogs: Unexpected Cooperative Effect in the Interaction of 5-Alkyloxymethyl 1,2,4-Triazol-3-Carboxamides with E. Coli Purine Nucleoside Phosphorylase Active Site. SSRN Electronic Journal 2022. doi:10.2139/ssrn.4158172
  • Matyugina, E. S.; Kochetkov, S. N.; Khandazhinskaya, A. L. Synthesis and biological activity of aza and deaza analogues of purine nucleosides. Russian Chemical Reviews 2021, 90, 1454–1491. doi:10.1070/rcr5013
  • Timofeev, V. I.; Abramchik, Y. A.; Muravyova, T. I.; Zhukhlistova, N. E.; Esipov, R. S.; Kuranova, I. P. Three-Dimensional Structure of Recombinant Thermophilic Ribokinase from Thermus speсies 2.9 in Complex with Adenosine Diphosphate. Crystallography Reports 2021, 66, 769–776. doi:10.1134/s1063774521050205
  • Fateev, I. V.; Kostromina, M. A.; Abramchik, Y.; Eletskaya, B. Z.; Mikheeva, O. O.; Lukoshin, D. D.; Zayats, E. A.; Berzina, M. Y.; Dorofeeva, E. V.; Paramonov, A. S.; Kayushin, A. L.; Konstantinova, I. D.; Esipov, R. S. Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways. Biomolecules 2021, 11, 586. doi:10.3390/biom11040586
  • Del Arco, J.; Acosta, J.; Fernández-Lucas, J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2′-deoxyribosyltransferases. Biotechnology advances 2021, 51, 107701. doi:10.1016/j.biotechadv.2021.107701
  • Żądło-Dobrowolska, A.; Kroutil, W. Applied Biocatalysis; Wiley, 2020; pp 193–236. doi:10.1002/9781119487043.ch5
  • Menzel, F.; Klein, T.; Ziegler, T.; Neumaier, J. M. 3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. Reaction Chemistry & Engineering 2020, 5, 1300–1310. doi:10.1039/d0re00206b
  • Kaspar, F.; Giessmann, R. T.; Westarp, S.; Hellendahl, K. F.; Krausch, N.; Thiele, I.; Walczak, M. C.; Neubauer, P.; Wagner, A. Spectral Unmixing-Based Reaction Monitoring of Transformations between Nucleosides and Nucleobases. Chembiochem : a European journal of chemical biology 2020, 21, 2604–2610. doi:10.1002/cbic.202000204
  • Vichier-Guerre, S.; Ku, T.; Pochet, S.; Seley-Radtke, K. L. An Expedient Synthesis of Flexible Nucleosides through Enzymatic Glycosylation of Proximal and Distal Fleximer Bases. Chembiochem : a European journal of chemical biology 2020, 21, 1412–1417. doi:10.1002/cbic.201900714
  • Kaspar, F.; Giessmann, R. T.; Neubauer, P.; Wagner, A.; Gimpel, M. Thermodynamic Reaction Control of Nucleoside Phosphorolysis. Advanced Synthesis & Catalysis 2020, 362, 867–876. doi:10.1002/adsc.201901230
  • Fang, J.; Hait, D.; Head‐Gordon, M.; Chang, M. C. Y. Chemoenzymatic Platform for Synthesis of Chiral Organofluorines Based on Type II Aldolases. Angewandte Chemie 2019, 131, 11967–11971. doi:10.1002/ange.201906805
  • Fang, J.; Hait, D.; Head-Gordon, M.; Chang, M. C. Y. Chemoenzymatic Platform for Synthesis of Chiral Organofluorines Based on Type II Aldolases. Angewandte Chemie (International ed. in English) 2019, 58, 11841–11845. doi:10.1002/anie.201906805
  • Kamel, S.; Yehia, H.; Neubauer, P.; Wagner, A. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives; Wiley, 2018; pp 1–28. doi:10.1002/9783527812103.ch1
  • Kamel, S.; Weiß, M.; Klare, H. F. T.; Mikhailopulo, I. A.; Neubauer, P.; Wagner, A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Molecular Catalysis 2018, 458, 52–59. doi:10.1016/j.mcat.2018.07.028

Patents

  • ZABUDKIN ALEXANDER; MATVIENKO VICTOR; MATVIIENKO IAROSLAV; SYPCHENKO VOLODYMYR. Method for the synthesis of clofarabine. US 10030043 B2, July 24, 2018.
  • ザブドキン アレキサンドル; マトヴィエンコ ヴィクトル; マトヴィイエンコ イアロスラヴ; シプチェンコ ヴォロディームィル. クロファラビンの合成方法. JP 2017513884 A, June 1, 2017.
  • ZABUDKIN ALEXANDER; MATVIENKO VICTOR; MATVIIENKO IAROSLAV; SYPCHENKO VOLODYMYR. METHOD FOR THE SYNTHESIS OF CLOFARABINE. WO 2015162175 A1, Oct 29, 2015.
  • ZABUDKIN ALEXANDER; MATVIENKO VICTOR; MATVIIENKO IAROSLAV; SYPCHENKO VOLODYMYR. Method for the synthesis of clofarabine. EP 2937420 A1, Oct 28, 2015.
Other Beilstein-Institut Open Science Activities