Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

Francesco Trotta, Fabrizio Caldera, Roberta Cavalli, Andrea Mele, Carlo Punta, Lucio Melone, Franca Castiglione, Barbara Rossi, Monica Ferro, Vincenza Crupi, Domenico Majolino, Valentina Venuti and Dominique Scalarone
Beilstein J. Org. Chem. 2014, 10, 2586–2593. https://doi.org/10.3762/bjoc.10.271

Cite the Following Article

Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer
Francesco Trotta, Fabrizio Caldera, Roberta Cavalli, Andrea Mele, Carlo Punta, Lucio Melone, Franca Castiglione, Barbara Rossi, Monica Ferro, Vincenza Crupi, Domenico Majolino, Valentina Venuti and Dominique Scalarone
Beilstein J. Org. Chem. 2014, 10, 2586–2593. https://doi.org/10.3762/bjoc.10.271

How to Cite

Trotta, F.; Caldera, F.; Cavalli, R.; Mele, A.; Punta, C.; Melone, L.; Castiglione, F.; Rossi, B.; Ferro, M.; Crupi, V.; Majolino, D.; Venuti, V.; Scalarone, D. Beilstein J. Org. Chem. 2014, 10, 2586–2593. doi:10.3762/bjoc.10.271

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Matencio, A.; Monfared, Y. K.; Caldera, F.; Mahmoodian, M.; López-Nicolás, J. M.; Zakeri-Milani, P.; Cavalli, R.; Trotta, F. Commercial and non-commercial cyclodextrin derivatives as a novel therapy to improve gout's disease and hyperuricemia. International journal of pharmaceutics 2025, 684, 126148. doi:10.1016/j.ijpharm.2025.126148
  • Hoti, G.; Bajwa, N.; Caldera, F.; Singh, P. A.; Hussein, I.; Cecone, C.; Matencio, A.; Spagnolo, R.; Argenziano, M.; Cavalli, R.; Madan, J.; Trotta, F. Cyclodextrin-based therapeutics delivery systems: A review of current clinical trials. Current research in pharmacology and drug discovery 2025, 9, 100232. doi:10.1016/j.crphar.2025.100232
  • Bahmei, F.; Hemmati, A.; Ghaemi, A.; Bahreini, M. Improving hypercrosslinked polymer CO2/N2 selective separation through tuning polymer's porous properties: Optimization using RSM-BBD. Journal of CO2 Utilization 2024, 88, 102926. doi:10.1016/j.jcou.2024.102926
  • Agnes, M.; Mazza, A.; Malanga, M.; Manet, I. Sculpturing the future of water-soluble cyclodextrin branched polymers in pharmaceutical applications. Journal of materials chemistry. B 2024, 12, 7969–7976. doi:10.1039/d4tb01165a
  • Kashani, E.; Maghsoudi, S.; Rezania, H.; Yarazavi, M.; Hajiabbas, M.; Benkovics, G.; Bilensoy, E.; Lacík, I.; Heydari, A. Cyclodextrin polymers containing ionizable and ionic groups: A comprehensive review from classifications and synthesis methods to applications. Materials Today Chemistry 2024, 39, 102186. doi:10.1016/j.mtchem.2024.102186
  • Chen, G.; Yu, J.; Wu, L.; Ji, X.; Xu, J.; Wang, C.; Ma, S.; Miao, Q.; Wang, L.; Wang, C.; Lewis, S. E.; Yue, Y.; Sun, Z.; Liu, Y.; Tang, B.; James, T. D. Fluorescent small molecule donors. Chemical Society reviews 2024, 53, 6345–6398. doi:10.1039/d3cs00124e
  • Salgın, S.; Çetintaş, H. İ.; Salgın, U. Synthesis and characterization of β-cyclodextrin polymers and its performance as a drug carrier. Inorganic and Nano-Metal Chemistry 2024, 55, 934–945. doi:10.1080/24701556.2024.2355514
  • Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T.; Szeleszczuk, Ł. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics. International journal of molecular sciences 2024, 25, 3527. doi:10.3390/ijms25063527
  • Laneri, F.; Licciardello, N.; Suzuki, Y.; Graziano, A. C. E.; Sodano, F.; Fraix, A.; Sortino, S. A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy. Pharmaceutics 2022, 15, 96. doi:10.3390/pharmaceutics15010096
  • Monfared, Y. K.; Mahmoudian, M.; Hoti, G.; Bisericaru, D. M.; Caldera, F.; Cavalli, R.; Zakeri-Milani, P.; Matencio, A.; Trotta, F. Hyper-Branched Cyclodextrin-Based Polymers as Anticoagulant Agents: In Vitro and In Vivo Studies. Bioengineering (Basel, Switzerland) 2022, 9, 765. doi:10.3390/bioengineering9120765
  • Monfared, Y. K.; Mahmoudian, M.; Cecone, C.; Caldera, F.; Haiaty, S.; Heidari, H. R.; Rahbarghazi, R.; Matencio, A.; Zakeri-Milani, P.; Trotta, F. Hyper-Branched Cationic Cyclodextrin Polymers for Improving Plasmid Transfection in 2D and 3D Spheroid Cells. Pharmaceutics 2022, 14, 2690. doi:10.3390/pharmaceutics14122690
  • Francese, R.; Cecone, C.; Costantino, M.; Hoti, G.; Bracco, P.; Lembo, D.; Trotta, F. Identification of a βCD-Based Hyper-Branched Negatively Charged Polymer as HSV-2 and RSV Inhibitor. International journal of molecular sciences 2022, 23, 8701. doi:10.3390/ijms23158701
  • Hoti, G.; Appleton, S. L.; Pedrazzo, A. R.; Cecone, C.; Matencio, A.; Trotta, F.; Caldera, F. Strategies to Develop Cyclodextrin-Based Nanosponges for Smart Drug Delivery. Smart Drug Delivery; IntechOpen, 2022. doi:10.5772/intechopen.100182
  • Agnes, M.; Pancani, E.; Malanga, M.; Fenyvesi, E.; Manet, I. Implementation of Water-Soluble Cyclodextrin-Based Polymers in Biomedical Applications: How Far Are We?. Macromolecular bioscience 2022, 22, e2200090. doi:10.1002/mabi.202200090
  • Matencio, A.; Rubin Pedrazzo, A.; Difalco, A.; Navarro-Orcajada, S.; Khazeai Monfared, Y.; Conesa, I.; Rezayat, A.; López-Nicolás, J. M.; Trotta, F. Advances and Classification of Cyclodextrin-Based Polymers for Food-Related Issues. Polymers 2021, 13, 4226. doi:10.3390/polym13234226
  • Caldera, F.; Moramarco, A.; Cesano, F.; Anceschi, A.; Damin, A.; Zanetti, M. Preparation and Carbonization of Glucose and Pyromellitic Dianhydride Crosslinked Polymers. 2021, 7, 56. doi:10.3390/c7030056
  • Köse, K.; Tüysüz, M.; Aksüt, D.; Uzun, L. Modification of cyclodextrin and use in environmental applications. Environmental science and pollution research international 2021, 29, 1–28. doi:10.1007/s11356-021-15005-y
  • Rizzi, V.; Gubitosa, J.; Signorile, R.; Fini, P.; Cecone, C.; Matencio, A.; Trotta, F.; Cosma, P. Cyclodextrin nanosponges as adsorbent material to remove hazardous pollutants from water: The case of ciprofloxacin. Chemical Engineering Journal 2021, 411, 128514. doi:10.1016/j.cej.2021.128514
  • Girek, T.; Koziel, K.; Girek, B.; Ciesielski, W. CD Oxyanions as a Tool for Synthesis of Highly Anionic Cyclodextrin Polymers. Polymers 2020, 12, 2845. doi:10.3390/polym12122845
  • Tannous, M.; Caldera, F.; Hoti, G.; Dianzani, U.; Cavalli, R.; Trotta, F. Drug-Encapsulated Cyclodextrin Nanosponges. Methods in molecular biology (Clifton, N.J.) 2020, 2207, 247–283. doi:10.1007/978-1-0716-0920-0_19

Patents

  • MATENCIO DURÁN ADRIÁN; TROTTA FRANCESCO; KHAZAEI MONFARED YOUSEF; CALDERA FABRIZIO; LÓPEZ NICOLÁS JOSÉ MANUEL. CYCLODEXTRIN DERIVATIVES FOR THE TREATMENT OF GOUT AND HYPERURICEMIA. WO 2024133757 A1, June 27, 2024.
  • SANT SHILPA; SANT VINAYAK. Biodegradable poly(ester amide) elastomers and uses therefor. US 10682438 B2, June 16, 2020.
  • SANT SHILPA; SANT VINAYAK. Biodegradable poly(ester amide) elastomers and uses therefor. US 10039858 B2, Aug 7, 2018.
Other Beilstein-Institut Open Science Activities