Design and synthesis of propellane derivatives and oxa-bowls via ring-rearrangement metathesis as a key step

Sambasivarao Kotha and Rama Gunta
Beilstein J. Org. Chem. 2015, 11, 1727–1731. https://doi.org/10.3762/bjoc.11.188

Supporting Information

Supporting Information File 1: Detailed experimental procedures, characterization data and copies of 1H and 13C NMR for all new compounds.
Format: PDF Size: 2.7 MB Download

Cite the Following Article

Design and synthesis of propellane derivatives and oxa-bowls via ring-rearrangement metathesis as a key step
Sambasivarao Kotha and Rama Gunta
Beilstein J. Org. Chem. 2015, 11, 1727–1731. https://doi.org/10.3762/bjoc.11.188

How to Cite

Kotha, S.; Gunta, R. Beilstein J. Org. Chem. 2015, 11, 1727–1731. doi:10.3762/bjoc.11.188

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kotha, S.; Mehta, G. Synthesis of Benzoxepine Derivatives via Two‐Fold Tandem Metathesis. ChemistrySelect 2023, 8. doi:10.1002/slct.202303176
  • Nassar, Y.; Piva, O. Photoredox-catalyzed hydroxymethylation of β-ketoesters: application to the synthesis of [3.3.3] propellane lactones. Organic & biomolecular chemistry 2021, 19, 9251–9259. doi:10.1039/d1ob01712h
  • Kotha, S.; Meshram, M.; Aswar, V. R. Application of ring-rearrangement metathesis in organic synthesis: A grand design. Tetrahedron Letters 2019, 60, 151337. doi:10.1016/j.tetlet.2019.151337
  • Sokolenko, Y. M.; Yurov, Y.; Vashchenko, B. V.; Hryshchuk, O. V.; Filimonova, Y.; Ostapchuk, E. N.; Artemenko, A.; Zaremba, O. V.; Grygorenko, O. O. Far Away from Flatland. Synthesis and Molecular Structure of Dihetera[3.3.n]propellanes and Trihetera[3.3.n]propellanes: Advanced Analogues of Morpholine/Piperazine. The Journal of organic chemistry 2019, 84, 13908–13921. doi:10.1021/acs.joc.9b02067
  • Kotha, S.; Aswar, V. R.; Ansari, S. Selectivity in Ring‐Closing Metathesis: Synthesis of Propellanes and Angular Aza‐tricycles. Advanced Synthesis & Catalysis 2019, 361, 1376–1382. doi:10.1002/adsc.201801123
  • Kotha, S.; Meshram, M.; Dommaraju, Y. Design and Synthesis of Polycycles, Heterocycles, and Macrocycles via Strategic Utilization of Ring-Closing Metathesis. Chemical record (New York, N.Y.) 2018, 18, 1613–1632. doi:10.1002/tcr.201800025
  • Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. Propellanes-From a Chemical Curiosity to "Explosive" Materials and Natural Products. Angewandte Chemie (International ed. in English) 2017, 56, 5684–5718. doi:10.1002/anie.201603951
  • Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. Propellane: von chemischen Kuriositäten zu “explosiven” Materialen und Naturstoffen. Angewandte Chemie 2017, 129, 5778–5813. doi:10.1002/ange.201603951
  • Kotha, S.; Rao, N. N.; Ravikumar, O.; Sreevani, G. Isomerization and functionalization of 2:1 Diels–Alder adducts of cyclopentadiene and p -benzoquinone: Applications to polycycles via ring-closing metathesis and ring-opening metathesis as key steps. Tetrahedron Letters 2017, 58, 1283–1286. doi:10.1016/j.tetlet.2017.02.039
  • Herndon, J. W. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015 ☆. Coordination Chemistry Reviews 2016, 329, 53–162. doi:10.1016/j.ccr.2016.08.007
  • Kotha, S.; Gunta, R. Bridgehead vicinal diallylation of norbornene derivatives and extension to propellane derivatives via ring-closing metathesis. Beilstein journal of organic chemistry 2016, 12, 1877–1883. doi:10.3762/bjoc.12.177
  • Kotha, S.; Ravikumar, O. Ring‐Rearrangement‐Metathesis Approach to Polycycles: Substrate‐Controlled Stereochemical Outcome During Grignard Addition. European Journal of Organic Chemistry 2016, 2016, 3900–3906. doi:10.1002/ejoc.201600596
  • Kotha, S.; Gunta, R. A new synthetic strategy to 2,3-diallyl-1,4-quinones via one-pot double Claisen rearrangement and retro Diels–Alder reaction. Tetrahedron Letters 2016, 57, 3021–3023. doi:10.1016/j.tetlet.2016.05.101
  • Roy, J.; Mal, T.; Jana, S.; Mal, D. Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins. Beilstein journal of organic chemistry 2016, 12, 531–536. doi:10.3762/bjoc.12.52
  • Kotha, S.; Meshram, M.; Khedkar, P.; Banerjee, S.; Deodhar, D. Recent applications of ring-rearrangement metathesis in organic synthesis. Beilstein journal of organic chemistry 2015, 11, 1833–1864. doi:10.3762/bjoc.11.199
Other Beilstein-Institut Open Science Activities