Biocatalysis for the application of CO2 as a chemical feedstock

Apostolos Alissandratos and Christopher J. Easton
Beilstein J. Org. Chem. 2015, 11, 2370–2387. https://doi.org/10.3762/bjoc.11.259

Cite the Following Article

Biocatalysis for the application of CO2 as a chemical feedstock
Apostolos Alissandratos and Christopher J. Easton
Beilstein J. Org. Chem. 2015, 11, 2370–2387. https://doi.org/10.3762/bjoc.11.259

How to Cite

Alissandratos, A.; Easton, C. J. Beilstein J. Org. Chem. 2015, 11, 2370–2387. doi:10.3762/bjoc.11.259

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Fan, J.; Wang, X.; Ma, J.; Liu, X.; Wu, J.; Liu, Y. Efficient photoreduction of carbon dioxide to acetaldehyde on monatomic defective black phosphorus. Molecular Catalysis 2024, 553, 113805. doi:10.1016/j.mcat.2023.113805
  • Carceller, A.; Guillén, M.; Álvaro, G. Lactic Acid from CO2: A Carbon Capture and Utilization Strategy Based on a Biocatalytic Approach. Environmental science & technology 2023, 57, 21727–21735. doi:10.1021/acs.est.3c05455
  • Nagireddi, S.; Agarwal, J. R.; Vedapuri, D. Carbon Dioxide Capture, Utilization, and Sequestration: Current Status, Challenges, and Future Prospects for Global Decarbonization. ACS Engineering Au 2023, 4, 22–48. doi:10.1021/acsengineeringau.3c00049
  • Gracia, L.-L.; Henkel, P.; Fuhr, O.; Bizzarri, C. Selectivity control towards CO versus H2 for photo-driven CO2 reduction with a novel Co(II) catalyst. Beilstein journal of organic chemistry 2023, 19, 1766–1775. doi:10.3762/bjoc.19.129
  • Tishkov, V. I.; Pometun, A. A.; Savin, S. S. FORMATE DEHYDROGENASE: FROM NAD(P)H REGENERATION TO THE TARGET IN PATHOGENS BIOFILMS, A COMPONENT OF HIGHLY EFFICIENT HYBRID BIOCATALYSTS AND CO2 FIXATION FROM THE ATMOSPHERE. Lomonosov chemistry journal 2023, 64, 289–311. doi:10.55959/msu0579-9384-2-2023-64-4-289-311
  • Zhong, W.; Li, H.; Wang, Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. Biodesign research 2023, 5, 0021. doi:10.34133/bdr.0021
  • Paul, S.; Adalder, A.; Ghorai, U. K. Progress of electrocatalytic urea synthesis: strategic design, reactor engineering, mechanistic details and techno-commercial study. Materials Chemistry Frontiers 2023, 7, 3820–3854. doi:10.1039/d3qm00433c
  • Tishkov, V. I.; Pometun, A. A.; Savin, S. S. Formate Dehydrogenase: From NAD(P)H Regeneration to Targeting Pathogen Biofilms, Composing Highly Efficient Hybrid Biocatalysts and Atmospheric CO2 Fixation. Moscow University Chemistry Bulletin 2023, 78, 151–169. doi:10.3103/s0027131423040077
  • Nguyen, H. K.; Minato, T.; Moniruzzaman, M.; Kiyasu, Y.; Ogo, S.; Yoon, K.-S. Selective formate production from H2 and CO2 using encapsulated whole-cells under mild reaction conditions. Journal of bioscience and bioengineering 2023, 136, 182–189. doi:10.1016/j.jbiosc.2023.06.002
  • Zhang, Z.; Ding, H.; Zhou, Q.; Pan, W.; Qiu, K.; Mu, X.; Ma, J.; Zhang, K.; Zhao, Y. Research progress and the prospect of CO2 hydrogenation with dielectric barrier discharge plasma technology. Carbon Letters 2023, 33, 973–987. doi:10.1007/s42823-023-00493-4
  • Wang, X.; Chang, F.; Wang, T.; Luo, H.; Su, X.; Tu, T.; Wang, Y.; Bai, Y.; Qin, X.; Zhang, H.; Wang, Y.; Yao, B.; Huang, H.; Zhang, J. Production of N-acetylglucosamine from carbon dioxide by engineering Cupriavidus necator H16. Bioresource technology 2023, 379, 129024. doi:10.1016/j.biortech.2023.129024
  • Markandan, K.; Sankaran, R.; Wei Tiong, Y.; Siddiqui, H.; Khalid, M.; Malik, S.; Rustagi, S. A Review on the Progress in Chemo-Enzymatic Processes for CO2 Conversion and Upcycling. Catalysts 2023, 13, 611. doi:10.3390/catal13030611
  • Le, T. Q. A. Recent Applications and Strategies to Enhance Performance of Electrochemical Reduction of CO2 Gas into Value-Added Chemicals Catalyzed by Whole-Cell Biocatalysts. Processes 2023, 11, 766. doi:10.3390/pr11030766
  • Magiri – Skouloudi, D.; Topakas, E.; Karellas, S. Microbial CO2 Conversion Routes. Chemical Valorisation of Carbon Dioxide; The Royal Society of Chemistry, 2022; pp 494–519. doi:10.1039/9781839167645-00494
  • Ren, T.; Miao, Z.; Ren, L.; Xie, H.; Li, Q.; Xia, C. Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO2 Reduction. Small (Weinheim an der Bergstrasse, Germany) 2022, 19, e2205168. doi:10.1002/smll.202205168
  • Sheppard, T. J.; Specht, D.; Barstow, B. Upper Limit Efficiency Estimates for Electromicrobial Production of Drop-In Jet Fuels. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.10.12.511952
  • Jerome, M. P.; Alahmad, F. A.; Salem, M. T.; Tahir, M. Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges. Journal of Environmental Chemical Engineering 2022, 10, 108151. doi:10.1016/j.jece.2022.108151
  • Yang, Z.; Chen, J.; Qiu, L.; Xie, W.; He, L. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie 2022, 134. doi:10.1002/ange.202205301
  • Yang, Z.-W.; Chen, J.-M.; Qiu, L.-Q.; Xie, W.-J.; He, L.-N. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie (International ed. in English) 2022, 61, e202205301. doi:10.1002/anie.202205301
  • Marecos, S.; Brigham, R.; Dressel, A.; Gaul, L.; Li, L.; Satish, K.; Tjokorda, I.; Zheng, J.; Schmitz, A. M.; Barstow, B. Practical and thermodynamic constraints on electromicrobially accelerated CO2 mineralization. iScience 2022, 25, 104769. doi:10.1016/j.isci.2022.104769
Other Beilstein-Institut Open Science Activities