Switching the reaction pathways of electrochemically generated β-haloalkoxysulfonium ions – synthesis of halohydrins and epoxides

Akihiro Shimizu, Ryutaro Hayashi, Yosuke Ashikari, Toshiki Nokami and Jun-ichi Yoshida
Beilstein J. Org. Chem. 2015, 11, 242–248. https://doi.org/10.3762/bjoc.11.27

Supporting Information

Supporting Information File 1: Experimental and analytical data.
Format: PDF Size: 5.5 MB Download

Cite the Following Article

Switching the reaction pathways of electrochemically generated β-haloalkoxysulfonium ions – synthesis of halohydrins and epoxides
Akihiro Shimizu, Ryutaro Hayashi, Yosuke Ashikari, Toshiki Nokami and Jun-ichi Yoshida
Beilstein J. Org. Chem. 2015, 11, 242–248. https://doi.org/10.3762/bjoc.11.27

How to Cite

Shimizu, A.; Hayashi, R.; Ashikari, Y.; Nokami, T.; Yoshida, J.-i. Beilstein J. Org. Chem. 2015, 11, 242–248. doi:10.3762/bjoc.11.27

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • He, H.; Lv, Y.; Hu, J.; Hou, Z.-W.; Wang, L. Seminormal-BrCH2CH2OH-mediated electrochemical epoxidation of unactivated olefins. Green Chemistry 2024, 26, 2157–2161. doi:10.1039/d3gc04061e
  • Wang, K.; Guo, Z.; Zhou, M.; Yang, Y.; Li, L.; Li, H.; Luque, R.; Saravanamurugan, S. Biomass valorization via electrocatalytic carbon–carbon bond cleavage. Journal of Energy Chemistry 2024, 91, 542–578. doi:10.1016/j.jechem.2023.12.041
  • Yadav, M. K.; Chowdhury, S. Electrochemical cascade reactions: an account of recent developments for this modern strategic tool in the arsenal of chemical synthesis. Green Chemistry 2023, 25, 10144–10181. doi:10.1039/d3gc01760e
  • Tan, Y.-F.; Zhao, Y.-N.; Yang, D.; Lv, J.-F.; Guan, Z.; He, Y.-H. Electrochemical Synthesis of β-Iodoesters by 1,2-Iodoesterization of Unactivated Alkenes with Carboxylic Acids and Tetrabutylammonium Iodide. The Journal of organic chemistry 2023, 88, 5161–5171. doi:10.1021/acs.joc.2c03020
  • Gombos, L. G.; Waldvogel, S. R. Electrochemical Bromofunctionalization of Alkenes and Alkynes—To Sustainability and Beyond. Sustainable Chemistry 2022, 3, 430–454. doi:10.3390/suschem3040027
  • Luan, S.; Castanheiro, T.; Poisson, T. Electrochemical Synthesis of Iodohydrins. Advanced Synthesis & Catalysis 2022, 364, 2741–2747. doi:10.1002/adsc.202200470
  • Bosnidou, A. E.; Romero, R. M. doi:10.1002/9783527829569.ch5
  • Seitz, J.; Wirth, T. Electrochemical bromofunctionalization of alkenes in a flow reactor. Organic & biomolecular chemistry 2021, 19, 6892–6896. doi:10.1039/d1ob01302e
  • Zhang, M.; Chen, T.; Fang, S.; Wu, W.; Wang, X.; Wu, H.; Xiong, Y.; Song, J.; Li, C.; He, Z.; Lee, C. S. Peroxide- and transition metal-free electrochemical synthesis of α,β-epoxy ketones. Organic & biomolecular chemistry 2021, 19, 2481–2486. doi:10.1039/d0ob02444a
  • Ashikari, Y.; Saito, K.; Nokami, T.; Yoshida, J.-i.; Nagaki, A. Oxo‐Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 15239–15243. doi:10.1002/chem.201903426
  • Yoshida, J.-i.; Hayashi, R.; Shimizu, A. Green Oxidation in Organic Synthesis; Wiley, 2019; pp 409–437. doi:10.1002/9781119304197.ch15
  • Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Recent Advances on the Electrochemical Difunctionalization of Alkenes/Alkynes. Chinese Journal of Chemistry 2019, 37, 292–301. doi:10.1002/cjoc.201800529
  • Shimizu, A. Development of Electroorganic Reactions Utilizing Stabilized Reactive Species and Its Application to Organic Energy Storage Materials. Electrochemistry 2018, 86, 298–302. doi:10.5796/electrochemistry.18-6-e2671
  • Hayashi, R.; Shimizu, A.; Davies, J. A.; Ishizaki, Y.; Willis, C. L.; Yoshida, J.-i. Metal‐ and Oxidant‐Free Alkenyl C−H/Aromatic C−H Cross‐Coupling Using Electrochemically Generated Iodosulfonium Ions. Angewandte Chemie (International ed. in English) 2018, 57, 12891–12895. doi:10.1002/anie.201807592
  • Hayashi, R.; Shimizu, A.; Davies, J. A.; Ishizaki, Y.; Willis, C.; Yoshida, J. Metal‐ and Oxidant‐Free Alkenyl C−H/Aromatic C−H Cross‐Coupling Using Electrochemically Generated Iodosulfonium Ions. Angewandte Chemie 2018, 130, 13073–13077. doi:10.1002/ange.201807592
  • McKinnie, R. J.; Darweesh, T.; Zito, P.; Shields, T. J.; Trudell, M. L. Synthesis of the 5-Fluoro-4-hydroxypentyl Side Chain Metabolites of Synthetic Cannabinoids 5F-APINACA and CUMYL-5F-PINACA. Synthesis 2018, 50, 4683–4689. doi:10.1055/s-0037-1609914
  • Kärkäs, M. D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chemical Society reviews 2018, 47, 5786–5865. doi:10.1039/c7cs00619e
  • Lopez-Lopez, E. E.; Pérez-Bautista, J. A.; Sartillo-Piscil, F.; Frontana-Uribe, B. A. Electrochemical Corey-Winter reaction. Reduction of thiocarbonates in aqueous methanol media and application to the synthesis of a naturally occurring α-pyrone. Beilstein journal of organic chemistry 2018, 14, 547–552. doi:10.3762/bjoc.14.41
  • Reid, L. M.; Li, T.; Cao, Y.; Berlinguette, C. P. Organic chemistry at anodes and photoanodes. Sustainable Energy & Fuels 2018, 2, 1905–1927. doi:10.1039/c8se00175h
  • Yoshida, J.-i.; Shimizu, A.; Hayashi, R. Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances. Chemical reviews 2017, 118, 4702–4730. doi:10.1021/acs.chemrev.7b00475
Other Beilstein-Institut Open Science Activities