Inclusion complexes of 2-methoxyestradiol with dimethylated and permethylated β-cyclodextrins: models for cyclodextrin–steroid interaction

Mino R. Caira, Susan A. Bourne, Halima Samsodien and Vincent J. Smith
Beilstein J. Org. Chem. 2015, 11, 2616–2630.

Supporting Information

Supporting Information File 1: Additional data.
Format: PDF Size: 2.0 MB Download

Cite the Following Article

Inclusion complexes of 2-methoxyestradiol with dimethylated and permethylated β-cyclodextrins: models for cyclodextrin–steroid interaction
Mino R. Caira, Susan A. Bourne, Halima Samsodien and Vincent J. Smith
Beilstein J. Org. Chem. 2015, 11, 2616–2630.

How to Cite

Caira, M. R.; Bourne, S. A.; Samsodien, H.; Smith, V. J. Beilstein J. Org. Chem. 2015, 11, 2616–2630. doi:10.3762/bjoc.11.281

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Vicatos, A. I.; Hoossen, Z.; Caira, M. R. Inclusion complexes of the steroid hormones 17β-estradiol and progesterone with β- and γ-cyclodextrin hosts: syntheses, X-ray structures, thermal analyses and API solubility enhancements. Beilstein journal of organic chemistry 2022, 18, 1749–1762. doi:10.3762/bjoc.18.184
  • Dohle, W.; Asiki, H.; Gruchot, W.; Foster, P. A.; Sahota, H. K.; Bai, R.; Christensen, K. E.; Hamel, E.; Potter, B. V. L. 2-Difluoromethoxy-Substituted Estratriene Sulfamates: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Steroid Sulfatase Inhibition. ChemMedChem 2022, 17, e202200408. doi:10.1002/cmdc.202200408
  • Giri, B. R.; Yang, H. S.; Song, I.-S.; Choi, H.-G.; Cho, J. H.; Kim, D. W. Alternative Methotrexate Oral Formulation: Enhanced Aqueous Solubility, Bioavailability, Photostability, and Permeability. Pharmaceutics 2022, 14, 2073. doi:10.3390/pharmaceutics14102073
  • Vicatos, A. I.; Caira, M. R. Cyclodextrin complexes of the anticonvulsant agent valproic acid. CrystEngComm 2021, 23, 6582–6590. doi:10.1039/d1ce01024g
  • Mahalapbutr, P.; Charoenwongpaiboon, T.; Phongern, C.; Kongtaworn, N.; Hannongbua, S.; Rungrotmongkol, T. Molecular encapsulation of a key odor-active 2-acetyl-1-pyrroline in aromatic rice with β-cyclodextrin derivatives. Journal of Molecular Liquids 2021, 337, 116394. doi:10.1016/j.molliq.2021.116394
  • Anderson, A. M.; Kirtadze, T.; Malanga, M.; Dinh, D.; Barnes, C.; Campo, A.; Clemens, D. M.; García-Fandiño, R.; Piñeiro, Á.; O'Connor, M. S. Cyclodextrin dimers: A versatile approach to optimizing encapsulation and their application to therapeutic extraction of toxic oxysterols. International journal of pharmaceutics 2021, 606, 120522. doi:10.1016/j.ijpharm.2021.120522
  • Belyakova, L. A. Капсулювання бензолкарбонових кислот за допомогою циклодекстринів. Himia, Fizika ta Tehnologia Poverhni 2021, 12, 40–51. doi:10.15407/hftp12.01.040
  • Giri, B. R.; Lee, J.; Lim, D. Y.; Kim, D. W. Docetaxel/dimethyl-β-cyclodextrin inclusion complexes: preparation, in vitro evaluation and physicochemical characterization. Drug development and industrial pharmacy 2021, 47, 319–328. doi:10.1080/03639045.2021.1879840
  • Mojdehi, M. F. P.; Koli, M. G.; Bolagh, M. D. O.; Gardeh, M. G.; Hashemianzadeh, S. M. A detailed computational study on binding of kinase inhibitors into β-cyclodextrin: inclusion complex formation. Molecular Systems Design & Engineering 2021, 6, 80–92. doi:10.1039/d0me00140f
  • Wang, C.; Yang, R.; Zhang, B.; Rongxia, Q.; Liu, H. The apparent formation constants of asiatic acid and its derivatives existing in Centella asiatica with cyclodextrins by HPLC. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2020, 98, 261–270. doi:10.1007/s10847-020-01026-6
  • Barton, B.; Jooste, D. V.; Senekal, U.; Hosten, E. C. Four xanthenyl-derived compounds: a comparative investigation of their host behaviour in the presence potential saturated and unsaturated heterocyclic six-membered ring guest solvents. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2020, 97, 217–229. doi:10.1007/s10847-020-00997-w
  • Kučáková, K.; Dolenský, B. Molecular structure study of a heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin complex of cholesterol. Steroids 2019, 155, 108555. doi:10.1016/j.steroids.2019.108555
  • Caira, M. R. Cyclodextrin Inclusion of Medicinal Compounds for Enhancement of their Physicochemical and Biopharmaceutical Properties. Current topics in medicinal chemistry 2019, 19, 2357–2370. doi:10.2174/1568026619666191018101524
  • Lobatto, V. L.; Argüello, G. A.; Caira, M. R.; Buján, E. I. Trifluralin and two of its photodegradation products: Crystal structures and phase solubility/UV studies with cyclodextrins. Journal of Physical Organic Chemistry 2019, 32. doi:10.1002/poc.4006
  • Lavorgna, M.; Iacovino, R.; Russo, C.; Di Donato, C.; Piscitelli, C.; Isidori, M. A New Approach for Improving the Antibacterial and Tumor Cytotoxic Activities of Pipemidic Acid by Including It in Trimethyl-β-cyclodextrin. International journal of molecular sciences 2019, 20, 416. doi:10.3390/ijms20020416
  • Furlan, A. L.; Buchoux, S.; Miao, Y.; Banchet, V.; Létévé, M.; Lambertyn, V.; Michel, J.; Sarazin, C.; Bonnet, V. Nanoparticles based on lipidyl-β-cyclodextrins: synthesis, characterization, and experimental and computational biophysical studies for encapsulation of atazanavir. New Journal of Chemistry 2018, 42, 20171–20179. doi:10.1039/c8nj03237h
  • Fenyvesi, É.; Puskás, I.; Szente, L. Applications of steroid drugs entrapped in cyclodextrins. Environmental Chemistry Letters 2018, 17, 375–391. doi:10.1007/s10311-018-0807-7
  • Fenyvesi, É.; Puskás, I.; Szente, L. Cyclodextrin-Steroid Interactions and Applications to Pharmaceuticals, Food, Biotechnology and Environment. Environmental Chemistry for a Sustainable World; Springer International Publishing, 2018; pp 19–57. doi:10.1007/978-3-319-76162-6_2
  • Kicuntod, J.; Sangpheak, K.; Mueller, M.; Wolschann, P.; Viernstein, H.; Yanaka, S.; Kato, K.; Chavasiri, W.; Pongsawasdi, P.; Kungwan, N.; Rungrotmongkol, T. Theoretical and Experimental Studies on Inclusion Complexes of Pinostrobin and β-Cyclodextrins. Scientia pharmaceutica 2018, 86, 5. doi:10.3390/scipharm86010005
  • Oliva, E.; Mathiron, D.; Bertaut, E.; Landy, D.; Cailleu, D.; Pilard, S.; Clément, C.; Courot, E.; Bonnet, V.; Djedaïni-Pilard, F. Physico-chemical studies of resveratrol, methyl-jasmonate and cyclodextrin interactions: an approach to resveratrol bioproduction optimization. RSC advances 2018, 8, 1528–1538. doi:10.1039/c7ra11619e
Other Beilstein-Institut Open Science Activities