Multivalency as a chemical organization and action principle

Rainer Haag
Beilstein J. Org. Chem. 2015, 11, 848–849. https://doi.org/10.3762/bjoc.11.94

Cite the Following Article

Multivalency as a chemical organization and action principle
Rainer Haag
Beilstein J. Org. Chem. 2015, 11, 848–849. https://doi.org/10.3762/bjoc.11.94

How to Cite

Haag, R. Beilstein J. Org. Chem. 2015, 11, 848–849. doi:10.3762/bjoc.11.94

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • D'Orazio, G.; Marradi, M.; La Ferla, B. Dual-Targeting Gold Nanoparticles: Simultaneous Decoration with Ligands for Co-Transporters SGLT-1 and B0AT1. Applied Sciences 2024, 14, 2248. doi:10.3390/app14062248
  • Okholm, K. R.; Nooteboom, S. W.; Lamberti, V.; Dey, S.; Zijlstra, P.; Sutherland, D. S. Kinetics and dynamics of single-molecule multivalent interactions revealed by plasmon-enhanced fluorescence. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.12.08.570798
  • Martínez-Fernández, M.; Martínez-Periñán, E.; de la Peña Ruigómez, A.; Cabrera-Trujillo, J. J.; Navarro, J. A. R.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Ramos, M.; Vismara, R.; Zamora, F.; Lorenzo, E.; Segura, J. L. Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angewandte Chemie (International ed. in English) 2023, 62, e202313940. doi:10.1002/anie.202313940
  • Martínez‐Fernández, M.; Martínez‐Periñán, E.; de la Peña Ruigómez, A.; Cabrera‐Trujillo, J. J.; Navarro, J. A. R.; Aguilar‐Galindo, F.; Rodríguez‐San‐Miguel, D.; Ramos, M.; Vismara, R.; Zamora, F.; Lorenzo, E.; Segura, J. L. Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angewandte Chemie 2023, 135. doi:10.1002/ange.202313940
  • Mourer, M.; Regnouf-de-Vains, J.-B.; Duval, R. E. Functionalized Calixarenes as Promising Antibacterial Drugs to Face Antimicrobial Resistance. Molecules (Basel, Switzerland) 2023, 28, 6954. doi:10.3390/molecules28196954
  • Arévalo-Fester, J.; Briceño, A. Insights into Selective Removal by Dye Adsorption on Hydrophobic vs Multivalent Hydrophilic Functionalized MWCNTs. ACS omega 2023, 8, 11233–11250. doi:10.1021/acsomega.2c08203
  • Tomás, H.; Rodrigues, J. Dendrimers and dendrimer-based nano-objects for oncology applications. New Trends in Smart Nanostructured Biomaterials in Health Sciences; Elsevier, 2023; pp 41–78. doi:10.1016/b978-0-323-85671-3.00002-6
  • Tobola, F.; Wiltschi, B. One, two, many: Strategies to alter the number of carbohydrate binding sites of lectins. Biotechnology advances 2022, 60, 108020. doi:10.1016/j.biotechadv.2022.108020
  • Marlin, A.; Hierlmeier, I.; Guillou, A.; Bartholomä, M.; Tripier, R.; Patinec, V. Bioconjugated chelates based on (methylpyridinyl)tacn: synthesis, 64Cu labeling and in vitro evaluation for prostate cancer targeting. Metallomics : integrated biometal science 2022, 14. doi:10.1093/mtomcs/mfac036
  • Tsouka, A.; Hoetzel, K.; Mende, M.; Heidepriem, J.; Paris, G.; Eickelmann, S.; Seeberger, P. H.; Lepenies, B.; Loeffler, F. F. Probing Multivalent Carbohydrate-Protein Interactions With On-Chip Synthesized Glycopeptides Using Different Functionalized Surfaces. Frontiers in chemistry 2021, 9, 766932. doi:10.3389/fchem.2021.766932
  • Jaeschke, S. O.; vom Sondern, I.; Lindhorst, T. K. Synthesis of regioisomeric maltose-based Man/Glc glycoclusters to control glycoligand presentation in 3D space. Organic & biomolecular chemistry 2021, 19, 7013–7023. doi:10.1039/d1ob01150b
  • Kumar, S.; Mandal, D.; El-Mowafi, S. A.; Mozaffari, S.; Tiwari, R.; Parang, K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020, 12, 842. doi:10.3390/pharmaceutics12090842
  • Dobbe, C.; Gutiérrez-Blanco, A.; Tan, T. T. Y.; Hepp, A.; Poyatos, M.; Peris, E.; Hahn, F. E. Template-Controlled Synthesis of Polyimidazolium Salts by Multiple [2+2] Cycloaddition Reactions. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 11565–11570. doi:10.1002/chem.202001515
  • Gabrielli, L.; Prins, L. J.; Rastrelli, F.; Mancin, F.; Scrimin, P. Hydrolytic Nanozymes. European Journal of Organic Chemistry 2020, 2020, 5044–5055. doi:10.1002/ejoc.202000356
  • Bian, Z.; Aiqin, L.; Li, Y.; Fang, G.; Yao, Q.; Zhang, G.; Wu, Z. Boronic acid sensors with double recognition sites: a review. The Analyst 2020, 145, 719–744. doi:10.1039/c9an00741e
  • Bunyarataphan, S.; Dharakul, T.; Fucharoen, S.; Paiboonsukwong, K.; Japrung, D. Glycated Albumin Measurement Using an Electrochemical Aptasensor for Screening and Monitoring of Diabetes Mellitus. Electroanalysis 2019, 31, 2254–2261. doi:10.1002/elan.201900264
  • Brekalo, J.; Despras, G.; Lindhorst, T. K. Pseudoenantiomeric glycoclusters: Synthesis and testing of heterobivalency in carbohydrate-protein interactions. Organic & biomolecular chemistry 2019, 17, 5929–5942. doi:10.1039/c9ob00124g
  • Monteiro, J. T.; Lepenies, B. Multivalency; Wiley, 2017; pp 325–344. doi:10.1002/9781119143505.ch13
  • Pawar, N. J.; Diederichsen, U.; Dhavale, D. D. Correction: Multivalent presentation of carbohydrates by 3(14)-helical peptide templates: synthesis, conformational analysis using CD spectroscopy and saccharide recognition. Organic & biomolecular chemistry 2016, 14, 785. doi:10.1039/c5ob90206a
  • Pawar, N. J.; Diederichsen, U.; Dhavale, D. D. Multivalent presentation of carbohydrates by 3(14)-helical peptide templates: synthesis, conformational analysis using CD spectroscopy and saccharide recognition. Organic & biomolecular chemistry 2015, 13, 11278–11285. doi:10.1039/c5ob01673h
Other Beilstein-Institut Open Science Activities