Supporting Information
| Supporting Information File 1: Copies of 1H, and13C NMR spectra for all new compounds. | ||
| Format: PDF | Size: 9.2 MB | Download |
Cite the Following Article
Synthesis of 2-oxindoles via 'transition-metal-free' intramolecular dehydrogenative coupling (IDC) of sp2 C–H and sp3 C–H bonds
Nivesh Kumar, Santanu Ghosh, Subhajit Bhunia and Alakesh Bisai
Beilstein J. Org. Chem. 2016, 12, 1153–1169.
https://doi.org/10.3762/bjoc.12.111
How to Cite
Kumar, N.; Ghosh, S.; Bhunia, S.; Bisai, A. Beilstein J. Org. Chem. 2016, 12, 1153–1169. doi:10.3762/bjoc.12.111
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 213.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Gupta, S.; Pal, S. An account on selective functionalization of C(sp3)-H bonds by oxidative cross dehydrogenative coupling (CDC) reactions under transition-metal free condition. Sustainable Chemistry and Pharmacy 2025, 44, 101955. doi:10.1016/j.scp.2025.101955
- Batra, A.; Kaur, M.; Singh, P.; Singh, K. N. Synthesis of Heteroatom‐Containing Organic Molecules via Intramolecular Cross‐Dehydrogenative Coupling. European Journal of Organic Chemistry 2025, 28. doi:10.1002/ejoc.202500014
- Das, P. P.; Das, D. Recent Advances in Transition Metal Catalyzed Synthesis of C3-Substitution-free 2-Oxindole Derivatives. Mini-Reviews in Organic Chemistry 2024, 21, 599–608. doi:10.2174/1570193x20666230821102422
- Zhukovets, A. A.; Chernyshov, V. V.; Al'mukhametov, A. Z.; Seregina, T. A.; Revtovich, S. V.; Kasatkina, M. A.; Isakova, Y. E.; Kulikova, V. V.; Morozova, E. A.; Cherkasova, A. I.; Mannanov, T. A.; Anashkina, A. A.; Solyev, P. N.; Mitkevich, V. A.; Ivanov, R. A. Novel Hydroxamic Acids Containing Aryl-Substituted 1,2,4- or 1,3,4-Oxadiazole Backbones and an Investigation of Their Antibiotic Potentiation Activity. International journal of molecular sciences 2023, 25, 96. doi:10.3390/ijms25010096
- Iwasaki, T.; Kambe, N. 9 (Het)Arene/Alkane Cross-Dehydrogenative Coupling for C(sp2)—C(sp3) Bond Formation. Cross-Dehydrogenative Coupling; Georg Thieme Verlag KG, 2023. doi:10.1055/sos-sd-240-00041
- Boghlemeshi, F. K.; Hosseini, M.; Nazari, N.; Gholamzadeh, P. Oxindole synthesis via C H activation methods. Advances in Heterocyclic Chemistry; Elsevier, 2023; pp 87–112. doi:10.1016/bs.aihch.2022.10.002
- Mondal, R.; Guin, A. K.; Paul, N. D. doi:10.1002/9783527834242.chf0167
- Shainyan, B. A. N-Heterocycles via oxidative intramolecular cyclization. Russian Chemical Reviews 2022, 91, RCR5052. doi:10.1070/rcr5052
- Kusaka, S.; Ohmura, T.; Suginome, M. Iridium-catalyzed Enantioselective Intramolecular Cross-dehydrogenative Coupling of Alkyl Aryl Ethers Giving Enantioenriched 2,3-Dihydrobenzofurans. Chemistry Letters 2022, 51, 601–604. doi:10.1246/cl.220129
- Ma, Z.; Zhou, A.; Xia, C. Strategies for total synthesis of bispyrrolidinoindoline alkaloids. Natural product reports 2022, 39, 1015–1044. doi:10.1039/d1np00060h
- Liao, H.; Huang, Z.; Zhu, Q. A simple iodine-DMSO-promoted multicomponent reaction for the synthesis of 2,4-disubstituted dihydrotriazole-3-ones. Organic & biomolecular chemistry 2022, 20, 3721–3725. doi:10.1039/d2ob00352j
- Radhoff, N.; Studer, A. Oxindole synthesis via polar-radical crossover of ketene-derived amide enolates in a formal [3 + 2] cycloaddition. Chemical science 2022, 13, 3875–3879. doi:10.1039/d1sc07134c
- Dobah, F.; Mazodze, C. M.; Petersen, W. F. Cross-Dehydrogenative Cyclization-Dimerization Cascade Sequence for the Synthesis of Symmetrical 3,3'-Bisoxindoles. Organic letters 2021, 23, 5466–5470. doi:10.1021/acs.orglett.1c01799
- Su, L.-J.; Sun, H.; Liu, J.-K.; Wang, C. Construction of Quaternary Carbon Center via NHC Catalysis Initiated by an Intermolecular Heck-Type Alkyl Radical Addition. Organic letters 2021, 23, 4662–4666. doi:10.1021/acs.orglett.1c01400
- Zhao, J.; Song, X.; Li, D.; Zhao, J.; Qu, J.; Zhou, Y. Intramolecular dehydrogenative coupling approach to 2‐oxindoles using Fe(OAc)2/NaI/Na2S2O8. European Journal of Organic Chemistry 2020, 2020, 6392–6398. doi:10.1002/ejoc.202001111
- Moreno-Cabrerizo, C.; Ortega-Martínez, A.; Esteruelas, M. A.; López, A. M.; Nájera, C.; Sansano, J. M. Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'-Bioxindoles. European Journal of Organic Chemistry 2020, 2020, 3101–3109. doi:10.1002/ejoc.202000375
- Murugesh, V.; Sahoo, A. R.; Achard, M.; Suresh, S. Synthesis and Functionalization of N-Heterocycles Using Transition Metal-Free Cross-Dehydrogenative Coupling (CDC) Approaches. Heterocycles via Cross Dehydrogenative Coupling; Springer Singapore, 2019; pp 143–212. doi:10.1007/978-981-13-9144-6_5
- Bayindir, S.; Lafzi, F. A simple oxindole-based colorimetric HSO4¯ sensor: Naked-eye detection and spectroscopic analysis. Journal of Photochemistry and Photobiology A: Chemistry 2019, 376, 146–154. doi:10.1016/j.jphotochem.2019.03.011
- Sumiyoshi, T.; Yamai, Y.-s.; Tanaka, A.; Yajima, T.; Ishida, K.; Natsutani, I.; Uesato, S.; Nagaoka, Y. Synthesis of Substituted t-Butyl 3-Alkyl-oxindole-3-carboxylates from Di-t-Butyl (2-Nitrophenyl)malonates. HETEROCYCLES 2018, 97, 192. doi:10.3987/com-17-s(t)2
- Roy, A.; Das, M. K.; Chaudhuri, S.; Bisai, A. Transition-Metal Free Oxidative Alkynylation of 2-Oxindoles with Ethynylbenziodoxolone (EBX) Reagents. The Journal of organic chemistry 2017, 83, 403–421. doi:10.1021/acs.joc.7b02797