Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds

Sophie Letort, Sébastien Balieu, William Erb, Géraldine Gouhier and François Estour
Beilstein J. Org. Chem. 2016, 12, 204–228.

Cite the Following Article

Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds
Sophie Letort, Sébastien Balieu, William Erb, Géraldine Gouhier and François Estour
Beilstein J. Org. Chem. 2016, 12, 204–228.

How to Cite

Letort, S.; Balieu, S.; Erb, W.; Gouhier, G.; Estour, F. Beilstein J. Org. Chem. 2016, 12, 204–228. doi:10.3762/bjoc.12.23

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 2.0 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Thongrueng, M.; Sudsakorn, K.; Charoenchaitrakool, M.; Seubsai, A.; Panchan, N.; Devahastin, S.; Niamnuy, C. Synthesis and Characterization of Environmentally Friendly β-Cyclodextrin Cross-Linked Cellulose/Poly(vinyl alcohol) Hydrogels for Adsorption of Malathion. ACS Omega 2024. doi:10.1021/acsomega.4c00037
  • Razuvaeva, Y.; Kashapov, R.; Ziganshina, A.; Kashapova, N.; Salnikov, V.; Zakharova, L. A supramolecular assembly of sulfobutyl ether-β-cyclodextrin and viologen calix[4]resorcinol as the master key to sustainable and eco-friendly catalyst for paraoxon hydrolysis. Carbohydrate polymers 2024, 334, 121984. doi:10.1016/j.carbpol.2024.121984
  • Nikmanesh, Y.; Farhadi, M.; Taherian, M.; Asban, P.; Kiani, F.; Mohammadi, M. J. The health endpoint due to exposure organophosphorus toxicant. Clinical Epidemiology and Global Health 2024, 25, 101508. doi:10.1016/j.cegh.2024.101508
  • Kashapov, R.; Razuvayeva, Y.; Ziganshina, A.; Salnikov, V.; Zakharova, L. A supramolecular catalyst based on sodium alginate and viologen calix[4]resorcinol for the room temperature hydrolysis of paraoxon. International journal of biological macromolecules 2023, 257, 128578. doi:10.1016/j.ijbiomac.2023.128578
  • Eling, C. J.; Laurand, N. Photocatalytic-ready Supraparticle Lasers. In 2023 IEEE Photonics Conference (IPC), IEEE, 2023. doi:10.1109/ipc57732.2023.10360584
  • S. Panwar, V.; Adhikari, L.; Semalty, M.; Semalty, A. DRUG-CYCLODEXTRIN COMPLEXES: CURRENT STATUS AND RECENT ADVANCEMENTS. INDIAN DRUGS 2023, 60, 7–18. doi:10.53879/id.60.10.12952
  • Sarabia-Vallejo, Á.; Caja, M. D. M.; Olives, A. I.; Martín, M. A.; Menéndez, J. C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. doi:10.3390/pharmaceutics15092345
  • Mahmoudi, F.; Shahraki, M. Computational study of inclusion complexes of V-type nerve agents (VE, VG, VM, VR and VX) with β-cyclodextrin. Journal of biomolecular structure & dynamics 2023, 42, 2681–2697. doi:10.1080/07391102.2023.2208226
  • Zhang, Y.; Zhou, B.; Chen, H.; Yuan, R. Heterogeneous photocatalytic oxidation for the removal of organophosphorus pollutants from aqueous solutions: A review. The Science of the total environment 2022, 856, 159048. doi:10.1016/j.scitotenv.2022.159048
  • Braga Barbosa, C.; Gaß, P.; Hamsch, D. J.; Kubik, S. Characterization of the Interaction of Nerve Agent Mimics with Selected Synthetic Receptors. Organic Materials 2022, 4, 146–152. doi:10.1055/a-1939-6455
  • Kordopati, G. G.; Konstantinou, N.-M.; Tsivgoulis, G. M. Comparison of Various Tosylating Reagents for the Synthesis of Mono-2-O-tosyl-β-cyclodextrin. Synthesis 2022, 54, 4015–4024. doi:10.1055/s-0040-1719927
  • Finnegan, T. J.; Gunawardana, V. W. L.; Badjić, J. D. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 13280–13305. doi:10.1002/chem.202101532
  • Mahmoudi, F.; Shahraki, M. Encapsulating and decontaminating of sarin by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin: MD simulations and QM calculations. Molecular Systems Design & Engineering 2021, 6, 643–653. doi:10.1039/d0me00173b
  • Waris, K. H.; Lee, V. S.; Mohamad, S. Pesticide remediation with cyclodextrins: a review. Environmental science and pollution research international 2021, 28, 47785–47799. doi:10.1007/s11356-021-15434-9
  • Çubuk, S.; Yetimoğlu, E. K.; Çalışkan, A.; Kahraman, M. V. A novel polymer based fluorimetric sensor for fast and selective determination of chlorpyrifos. Microchemical Journal 2021, 165, 106098. doi:10.1016/j.microc.2021.106098
  • Liu, P.; Wang, H.; Zeng, H.; Hong, X.; Huang, F. A [15]paracyclophenone and its fluorenone-containing derivatives: syntheses and binding to nerve agent mimics via aryl-CH hydrogen bonding interactions. Organic Chemistry Frontiers 2021, 8, 25–31. doi:10.1039/d0qo00456a
  • Hrvat, N. M.; Kovarik, Z. Counteracting poisoning with chemical warfare nerve agents. Arhiv za higijenu rada i toksikologiju 2020, 71, 266–284. doi:10.2478/aiht-2020-71-3459
  • Andrae, B.; Bauer, D.; Gaß, P.; Koller, M.; Worek, F.; Kubik, S. Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic & biomolecular chemistry 2020, 18, 5218–5227. doi:10.1039/d0ob01167c
  • Biyogo, A. M.; Hespel, L.; Humblot, V.; Lebrun, L.; Estour, F. Cellulose fibers modification through metal-free click chemistry for the elaboration of versatile functional surfaces. European Polymer Journal 2020, 135, 109866. doi:10.1016/j.eurpolymj.2020.109866
  • Masson, P.; Lushchekina, S. V. Catalytic bioscavengers: the second generation of bioscavenger-based medical countermeasures. Handbook of Toxicology of Chemical Warfare Agents; Elsevier, 2020; pp 1199–1229. doi:10.1016/b978-0-12-819090-6.00072-6
Other Beilstein-Institut Open Science Activities