Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

Takashi Nishikata, Alexander R. Abela, Shenlin Huang and Bruce H. Lipshutz
Beilstein J. Org. Chem. 2016, 12, 1040–1064.

Supporting Information

Supporting Information File 1: Experimental procedures and characterization of all new compounds.
Format: PDF Size: 2.1 MB Download
Supporting Information File 2: Crystal structure of 6.
Format: CIF Size: 14.7 KB Download
Supporting Information File 3: Crystal structure of 6 No 2.
Format: PDF Size: 213.6 KB Download

Cite the Following Article

Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies
Takashi Nishikata, Alexander R. Abela, Shenlin Huang and Bruce H. Lipshutz
Beilstein J. Org. Chem. 2016, 12, 1040–1064.

How to Cite

Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. Beilstein J. Org. Chem. 2016, 12, 1040–1064. doi:10.3762/bjoc.12.99

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 153.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jacob, C.; Evano, G.; Annibaletto, J.; Maes, B. U. W. Direct Arylation of C(sp2)–H Bonds in Anilines. Synthesis 2023, 55, 1799–1823. doi:10.1055/a-2039-7985
  • Manna, K.; Jana, R. Palladium-Catalyzed Cross-Electrophile Coupling between Aryl Diazonium Salt and Aryl Iodide/Diaryliodonium Salt in H2O-EtOH. Organic letters 2023, 25, 341–346. doi:10.1021/acs.orglett.2c03932
  • Kumar, S.; Kajol, K.; Nayak, P.; Kumar, A.; Ramesh, C. Synthesis of tetracyclic 4H-benzo[5,6]chromeno[3,4-d]oxazoles via palladium-catalyzed intramolecular direct heteroarylation. Chemistry, an Asian journal 2023, 18, e202201151. doi:10.1002/asia.202201151
  • Luscombe, C. K.; Yadav, P.; Velmurugan, N. Recent Advances in Room-Temperature Direct C–H Arylation Methodologies. Synthesis 2022, 55, 1–26. doi:10.1055/a-1939-7052
  • Kajol, K.; Kumar, S.; Kumar, A.; Kant, R.; Ramesh, C. Palladium‐Catalyzed Intramolecular C−H Heteroarylation to Access Fused Tricyclic Oxazolo[4,5‐c]Quinolines. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202200066
  • Gallou, F.; Parmentier, M. doi:10.1002/047084289x.rn02376
  • Cheng, H.; Yang, T.; Edwards, M.; Tang, S.; Xu, S.; Yan, X. Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C-C Coupling and C-H Arylation through in Situ Anodically Generated Cationic Pd. Journal of the American Chemical Society 2022, 144, 1306–1312. doi:10.1021/jacs.1c11179
  • Hauk, P.; Wencel-Delord, J.; Ackermann, L.; Walde, P.; Gallou, F. Organic synthesis in Aqueous Multiphase Systems — Challenges and opportunities ahead of us. Current Opinion in Colloid & Interface Science 2021, 56, 101506. doi:10.1016/j.cocis.2021.101506
  • Faarasse, S.; Brahmi, N. E.; Guillaumet, G.; Kazzouli, S. E. Regioselective C-H Functionalization of the Six-Membered Ring of the 6,5-Fused Heterocyclic Systems: An Overview. Molecules (Basel, Switzerland) 2021, 26, 5763. doi:10.3390/molecules26195763
  • Murali, K.; Machado, L. A.; Carvalho, R. L.; Pedrosa, L. F.; Mukherjee, R.; da Silva Júnior, E. N.; Maiti, D. Decoding Directing Groups and Their Pivotal Role in C−H Activation. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 12453–12508. doi:10.1002/chem.202101004
  • Feng, E.; Ma, X.; Kenttämaa, H. I. Characterization of Protonated Substituted Ureas by Using Diagnostic Gas-Phase Ion-Molecule Reactions Followed by Collision-Activated Dissociation in Tandem Mass Spectrometry Experiments. Analytical chemistry 2021, 93, 7851–7859. doi:10.1021/acs.analchem.1c00326
  • Tóth, B. L.; Monory, A.; Egyed, O.; Domján, A.; Bényei, A.; Szathury, B.; Novák, Z.; Stirling, A. The ortho effect in directed C–H activation. Chemical science 2021, 12, 5152–5163. doi:10.1039/d1sc00642h
  • Babu, S. S.; Muthuraja, P.; Yadav, P.; Gopinath, P. Aryldiazonium Salts in Photoredox Catalysis – Recent Trends. Advanced Synthesis & Catalysis 2021, 363, 1782–1809. doi:10.1002/adsc.202100136
  • Calascibetta, A. M.; Mattiello, S.; Sanzone, A.; Facchinetti, I.; Sassi, M.; Beverina, L. Sustainable Access to π-Conjugated Molecular Materials via Direct (Hetero)Arylation Reactions in Water and under Air. Molecules (Basel, Switzerland) 2020, 25, 3717. doi:10.3390/molecules25163717
  • Babu, S. S.; Shahid, M.; Gopinath, P. Dual palladium-photoredox catalyzed chemoselective C-H arylation of phenylureas. Chemical communications (Cambridge, England) 2020, 56, 5985–5988. doi:10.1039/d0cc01443e
  • Brunzel, T.; Heppekausen, J.; Panten, J.; Köckritz, A. Selective Wacker type oxidation of a macrocyclic diene to the corresponding monounsaturated ketone used as fragrance. RSC advances 2019, 9, 27865–27873. doi:10.1039/c9ra04971a
  • Bin Lee, J.; Jeon, M. H.; Seo, J. K.; von Helden, G.; Rohde, J.-U.; Zhao, B. S.; Seo, J.; Hong, S. Y. Annulative π-Extension of Unactivated Benzene Derivatives through Nondirected C-H Arylation. Organic letters 2019, 21, 7004–7008. doi:10.1021/acs.orglett.9b02583
  • Mensah, E.; Green, S. D.; West, J.; Kindoll, T.; Lazaro-Martinez, B. Formation of Acetals and Ketals from Carbonyl Compounds: A New and Highly Efficient Method Inspired by Cationic Palladium. Synlett 2019, 30, 1810–1814. doi:10.1055/s-0039-1690497
  • Zhu, G.; Shi, W.; Gao, H.; Zhou, Z.; Song, H.; Yi, W. Chemodivergent Couplings of N-Arylureas and Methyleneoxetanones via Rh(III)-Catalyzed and Solvent-Controlled C-H Activation. Organic letters 2019, 21, 4143–4147. doi:10.1021/acs.orglett.9b01333
  • Yetra, S. R.; Rogge, T.; Warratz, S.; Struwe, J.; Peng, W.; Vana, P.; Ackermann, L. Mizellare Katalyse für Ruthenium(II)‐katalysierte C‐H‐Arylierung: Schwache Koordination ermöglicht C‐H‐Aktivierung in H2O. Angewandte Chemie 2019, 131, 7569–7573. doi:10.1002/ange.201901856
Other Beilstein-Institut Open Science Activities