Supporting Information
| Supporting Information File 1: Experimental, X-ray crystallographic data, and NMR spectra. | ||
| Format: PDF | Size: 7.0 MB | Download |
Cite the Following Article
The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction
Erika Bálint, Ádám Tajti, Anna Ádám, István Csontos, Konstantin Karaghiosoff, Mátyás Czugler, Péter Ábrányi-Balogh and György Keglevich
Beilstein J. Org. Chem. 2017, 13, 76–86.
https://doi.org/10.3762/bjoc.13.10
How to Cite
Bálint, E.; Tajti, Á.; Ádám, A.; Csontos, I.; Karaghiosoff, K.; Czugler, M.; Ábrányi-Balogh, P.; Keglevich, G. Beilstein J. Org. Chem. 2017, 13, 76–86. doi:10.3762/bjoc.13.10
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 146.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Attorresi, C. I.; Ramírez, J. A.; Westermann, B. Formaldehyde surrogates in multicomponent reactions. Beilstein journal of organic chemistry 2025, 21, 564–595. doi:10.3762/bjoc.21.45
- Davletshin, R. R.; Sedov, A. N.; Shulaeva, M. P.; Ivshin, K. A.; Davletshina, N. V.; Gerasimov, A. V.; Kuryntseva, P. A.; Mosunova, S. V. Synthesis, structure and antimicrobial activity of dialkyl [(hydroxy)(4-nitrophenyl)methyl]phosphonates. Mendeleev Communications 2025, 35, 152–154. doi:10.71267/mencom.7587
- Bawazir, W. A.; Ali, T. E.; Assiri, M. A.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Ultrasound-assisted synthesis of novel 2-aryl-3-ethoxy-5-methyl-3-oxido-2H-thiazolo[2,3-e][1,4,2]diazaphosphole-6-carboxylates and their anticancer efficacy in inducing apoptosis and autophagy and targeting cell cycle progression. RSC advances 2024, 14, 37554–37569. doi:10.1039/d4ra07173e
- Veeranna, G.; Chittireddy, V. R. R.; Ravinder, V. Synthesis and characterization of Ru(II) complexes with polyfunctional amides and their application in catalytic oxidative coupling of amines. Results in Chemistry 2024, 9, 101618. doi:10.1016/j.rechem.2024.101618
- Ravula, M.; Bandalla, S.; Dosarapu, V.; Kurra, M.; Mavurapu, S.; Vasam, C. S. Selective Synthesis of Imines via Oxidative Coupling of Primary Amines and Oxidation of Secondary Amines by Peroxides and other Competent Oxidants: A Short Review. Oriental Journal Of Chemistry 2024, 40, 611–629. doi:10.13005/ojc/400301
- Ramani, A.; Bhavyesh, D.; Kanta Koppolu, M.; Chinna Ashalu, K.; Begari, E.; Naveen, T. An Efficient Synthesis of α‐Sulfonamide Phosphonates through Metal‐Free Three‐Component Reaction. Asian Journal of Organic Chemistry 2024, 13. doi:10.1002/ajoc.202400100
- Soliya, S.; Kuperkar, K.; Ashalu, K. C.; Naveen, T. Catalyst‐Free Three‐Component Synthesis of α‐Amino Phosphonates. Asian Journal of Organic Chemistry 2024, 13. doi:10.1002/ajoc.202300572
- Mandal, S.; Narvariya, R.; Sunar, S. L.; Paul, I.; Jain, A.; Panda, T. K. Synthesis of α-aminophosphorous derivatives using a deep eutectic solvent (DES) in a dual role. Green Chemistry 2023, 25, 8266–8272. doi:10.1039/d3gc02721j
- Moiseev, D. V. Phospha-Mannich reactions of phosphinous acids R 2 P–OH and their derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 2023, 198, 867–923. doi:10.1080/10426507.2023.2235054
- Gábor, D.; Pollák, P.; Volk, B.; Dancsó, A.; Simig, G.; Milen, M. Catalyst‐ and Solvent‐Free Room Temperature Synthesis of α‐Aminophosphonates: Green Accomplishment of the Kabachnik–Fields Reaction. ChemistrySelect 2023, 8. doi:10.1002/slct.202301460
- Kocsis, D.; Varga, P. R.; Keshwan, R.; Nader, M.; Lengyel, M.; Szabó, P.; Antal, I.; Kánai, K.; Keglevich, G.; Erdő, F. Transdermal Delivery of α-Aminophosphonates as Semisolid Formulations-An In Vitro-Ex Vivo Study. Pharmaceutics 2023, 15, 1464. doi:10.3390/pharmaceutics15051464
- Tóth, S.; Keglevich, G.; Varga, P. R.; Dinnyési, E.; Szakács, G. Optimized Synthesis and Cytotoxic Activity of α-Aminophosphonates Against a Multidrug Resistant Uterine Sarcoma Cell Line. Letters in Drug Design & Discovery 2023, 20, 365–371. doi:10.2174/1570180819666220609104427
- Arbuzova, S. N.; Verkhoturova, S. I.; Zinchenko, S. V.; Kolyvanov, N. A.; Chernysheva, N. A.; Bishimbaeva, G. K.; Trofimov, B. A. Catalyst‐ and Solvent‐Free Hydrophosphorylation of Aldimines with Secondary Phosphine Chalcogenides: Synthesis of Tertiary α ‐Aminophosphine Oxides, Sulfides and Selenides. ChemistrySelect 2022, 7. doi:10.1002/slct.202202757
- Kaboudin, B.; Faghih, S.; Alavi, S.; Naimi-Jamal, M. R.; Fattahi, A. An Efficient One-Pot Synthesis of 1-Aminophosphonates. Synthesis 2022, 55, 121–130. doi:10.1055/a-1941-1242
- Lamberink, J.-W.; Boyle, P. D.; Gilroy, J. B.; Noël, J. J.; Blacquiere, J. M.; Ragogna, P. J. Reactivity of Primary Phosphines and Primary Phosphine Sulfides towards Imines. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201565. doi:10.1002/chem.202201565
- Cheng, X.-W.; Jin, W.-J.; Zhang, C.; Wu, Y.-X.; Guan, J.-P. Novel and durable flame-retardant modification based on the Schiff base and Pudovik reaction for wool fabric. Textile Research Journal 2021, 92, 3252–3260. doi:10.1177/00405175211063907
- Chen, Z.-D.; Xu, W.-K.; Guo, J.-M.; Chen, L.; Wei, B.-G.; Si, C.-M.; Lin, G.-Q. A One-Pot Approach to 2-Substituted-2-(Dimethoxyphosphoryl)-Pyrrolidines from Substituted tert-Butyl 4-Oxobutylcarbamates and Trimethyl Phosphite. The Journal of organic chemistry 2021, 86, 11442–11455. doi:10.1021/acs.joc.1c00935
- Amira, A.; Aouf, Z.; K'tir, H.; Chemam, Y.; Ghodbane, R.; Zerrouki, R.; Aouf, N.-E. Recent Advances in the Synthesis of α-Aminophosphonates: A Review. ChemistrySelect 2021, 6, 6137–6149. doi:10.1002/slct.202101360
- Varga, P. R.; Keglevich, G. Synthesis of α-Aminophosphonates and Related Derivatives; the Last Decade of the Kabachnik-Fields Reaction. Molecules (Basel, Switzerland) 2021, 26, 2511. doi:10.3390/molecules26092511
- Serafin-Lewańczuk, M.; Brzezińska-Rodak, M.; Lubiak-Kozłowska, K.; Majewska, P.; Klimek-Ochab, M.; Olszewski, T. K.; Żymańczyk-Duda, E. Phosphonates enantiomers receiving with fungal enzymatic systems. Microbial cell factories 2021, 20, 81. doi:10.1186/s12934-021-01573-8