Supporting Information
| Supporting Information File 1: Additional figures. | ||
| Format: PDF | Size: 605.8 KB | Download |
Cite the Following Article
Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones
Qin Zhu and Xinyu Liu
Beilstein J. Org. Chem. 2017, 13, 1168–1173.
https://doi.org/10.3762/bjoc.13.115
How to Cite
Zhu, Q.; Liu, X. Beilstein J. Org. Chem. 2017, 13, 1168–1173. doi:10.3762/bjoc.13.115
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 435.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Kayrouz, C. S.; Manske, J. L.; Garçon, M.; Joyner, I. A.; Wang, Y.; Ge, Y.; Paton, A. E.; Narayan, A. R. H.; Hartwig, J. F. Site-, Stereo-, and Chemoselective Enzymatic Halogenation of Terpenoids by a Substrate Masquerade. Journal of the American Chemical Society 2025, 147, 36478–36485. doi:10.1021/jacs.5c11068
- Ni, J.; Zhuang, J.; Shi, Y.; Chiang, Y.-C.; Cheng, G.-J. Discovery and substrate specificity engineering of nucleotide halogenases. Nature communications 2024, 15, 5254. doi:10.1038/s41467-024-49147-7
- Clayman, P.; Roiban, G.-D.; Fuerst, D. Biocatalytic Resolutions. Comprehensive Chirality; Elsevier, 2024; pp 241–258. doi:10.1016/b978-0-32-390644-9.00058-5
- Voss, M.; Hüppi, S.; Schaub, D.; Hayashi, T.; Ligibel, M.; Sager, E.; Schroer, K.; Snajdrova, R.; Buller, R. Enzyme Engineering Enables Inversion of Substrate Stereopreference of the Halogenase WelO5*. ChemCatChem 2022, 14. doi:10.1002/cctc.202201115
- Papadopoulou, A.; Meyer, F.; Buller, R. M. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2022, 62, 229–240. doi:10.1021/acs.biochem.2c00115
- Wojdyla, Z.; Borowski, T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202104106. doi:10.1002/chem.202104106
- Harken, L.; Liu, J.; Kreuz, O.; Berger, R.; Li, S.-M. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catalysis 2021, 12, 648–654. doi:10.1021/acscatal.1c04609
- Hohlman, R. M.; Sherman, D. H. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Natural product reports 2021, 38, 1567–1588. doi:10.1039/d1np00007a
- Crowe, C.; Molyneux, S.; Sharma, S. V.; Zhang, Y.; Gkotsi, D. S.; Connaris, H.; Goss, R. J. M. Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation. Chemical Society reviews 2021, 50, 9443–9481. doi:10.1039/d0cs01551b
- Papadopoulou, A.; Meierhofer, J.; Meyer, F.; Hayashi, T.; Schneider, S.; Sager, E.; Buller, R. Re-programming and optimization of a L-proline cis-4-hydroxylase for the cis-3-halogenation of its native substrate. ChemCatChem 2021, 13, 3914–3919. doi:10.1002/cctc.202100591
- Romero, E.; Jones, B. S.; Hogg, B. N.; Casamajo, A. R.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. Angewandte Chemie (Weinheim an der Bergstrasse, Germany) 2021, 133, 16962–16993. doi:10.1002/ange.202014931
- Romero, E.; Jones, B. S.; Hogg, B. N.; Casamajo, A. R.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angewandte Chemie (International ed. in English) 2021, 60, 16824–16855. doi:10.1002/anie.202014931
- Menon, B. R. K.; Richmond, D.; Menon, N.
- Menon, B. R. K.; Richmond, D.; Menon, N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. Catalysis Reviews 2020, 64, 533–591. doi:10.1080/01614940.2020.1823788
- Minges, H.; Sewald, N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020, 12, 4450–4470. doi:10.1002/cctc.202000531
- Zhang, X.; Wang, Z.; Gao, J.; Liu, W. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5. Physical chemistry chemical physics : PCCP 2020, 22, 8699–8712. doi:10.1039/d0cp00791a
- Voss, M.; Malca, S. H.; Buller, R. Exploring the biocatalytic potential of Fe/α‐ketoglutarate dependent halogenases. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 7336–7345. doi:10.1002/chem.201905752
- Duewel, S.; Schmermund, L.; Faber, T. M.; Harms, K.; Srinivasan, V.; Meggers, E.; Hoebenreich, S. Directed Evolution of an FeII-Dependent Halogenase for Asymmetric C(sp3)–H Chlorination. ACS Catalysis 2019, 10, 1272–1277. doi:10.1021/acscatal.9b04691
- Hayashi, T.; Ligibel, M.; Sager, E.; Voss, M.; Hunziker, J.; Schroer, K.; Snajdrova, R.; Buller, R. Evolvierte aliphatische Halogenasen ermöglichen die regiokomplementäre C‐H‐Funktionalisierung einer hochwertigen Chemikalie. Angewandte Chemie 2019, 131, 18706–18711. doi:10.1002/ange.201907245
- Hayashi, T.; Ligibel, M.; Sager, E.; Voss, M.; Hunziker, J.; Schroer, K.; Snajdrova, R.; Buller, R. Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound. Angewandte Chemie (International ed. in English) 2019, 58, 18535–18539. doi:10.1002/anie.201907245