Towards open-ended evolution in self-replicating molecular systems

Herman Duim and Sijbren Otto
Beilstein J. Org. Chem. 2017, 13, 1189–1203. https://doi.org/10.3762/bjoc.13.118

Cite the Following Article

Towards open-ended evolution in self-replicating molecular systems
Herman Duim and Sijbren Otto
Beilstein J. Org. Chem. 2017, 13, 1189–1203. https://doi.org/10.3762/bjoc.13.118

How to Cite

Duim, H.; Otto, S. Beilstein J. Org. Chem. 2017, 13, 1189–1203. doi:10.3762/bjoc.13.118

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.6 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Cary, F. C. A.; Deamer, D. W.; Damer, B. F.; Fagents, S. A.; Ruttenberg, K. C.; Donachie, S. P. Could Life Have Started on Mars? Planetary Conditions That Assemble and Destroy Protocells. Life 2024, 14, 415. doi:10.3390/life14030415
  • Kroc, J. Emergent Information Processing: Observations, Experiments, and Future Directions. Software 2024, 3, 81–106. doi:10.3390/software3010005
  • Komáromy, D.; Monzón, D. M.; Marić, I.; Monreal Santiago, G.; Ottelé, J.; Altay, M.; Schaeffer, G.; Otto, S. Generalist versus Specialist Self-Replicators. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, e202303837. doi:10.1002/chem.202303837
  • Schoenmakers, L. L. J.; Reydon, T. A. C.; Kirschning, A. Evolution at the Origins of Life?. Life (Basel, Switzerland) 2024, 14, 175. doi:10.3390/life14020175
  • Chan, B. W.-C. Towards Large-Scale Simulations of Open-Ended Evolution in Continuous Cellular Automata. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation, ACM, 2023. doi:10.1145/3583133.3590670
  • De Capitani, J.; Mutschler, H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023, 62, 1221–1232. doi:10.1021/acs.biochem.3c00023
  • Vibhute, M. A.; Mutschler, H. A Primer on Building Life‐Like Systems. ChemSystemsChem 2022, 5. doi:10.1002/syst.202200033
  • Slootbeek, A. D.; van Haren, M. H. I.; Smokers, I. B. A.; Spruijt, E. Growth, replication and division enable evolution of coacervate protocells. Chemical communications (Cambridge, England) 2022, 58, 11183–11200. doi:10.1039/d2cc03541c
  • Xavier, J. C.; Kauffman, S. Small-molecule autocatalytic networks are universal metabolic fossils. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2022, 380, 20210244. doi:10.1098/rsta.2021.0244
  • Synak, J.; Rybarczyk, A.; Blazewicz, J. RNA World Modeling: A Comparison of Two Complementary Approaches. Entropy (Basel, Switzerland) 2022, 24, 536. doi:10.3390/e24040536
  • Liu, B.; Wu, J.; Geerts, M.; Markovitch, O.; Pappas, C. G.; Liu, K.; Otto, S. Out‐of‐Equilibrium Self‐Replication Allows Selection for Dynamic Kinetic Stability in a System of Competing Replicators. Angewandte Chemie 2022, 134. doi:10.1002/ange.202117605
  • Liu, B.; Wu, J.; Geerts, M.; Markovitch, O.; Pappas, C. G.; Liu, K.; Otto, S. Out-of-Equilibrium Self-Replication Allows Selection for Dynamic Kinetic Stability in a System of Competing Replicators. Angewandte Chemie (International ed. in English) 2022, 61, e202117605. doi:10.1002/anie.202117605
  • Hatai, J.; Altay, Y.; Sood, A.; Kiani, A.; Eleveld, M. J.; Motiei, L.; Margulies, D.; Otto, S. An Optical Probe for Real-Time Monitoring of Self-Replicator Emergence and Distinguishing between Replicators. Journal of the American Chemical Society 2022, 144, 3074–3082. doi:10.1021/jacs.1c11594
  • Martin, B.; Dans, P. D.; Wieczór, M.; Villegas, N.; Brun-Heath, I.; Battistini, F.; Terrazas, M.; Orozco, M. Molecular basis of Arginine and Lysine DNA sequence-dependent thermo-stability modulation. PLoS computational biology 2022, 18, e1009749. doi:10.1371/journal.pcbi.1009749
  • Otto, S. An Approach to the De Novo Synthesis of Life. Accounts of chemical research 2021, 55, 145–155. doi:10.1021/acs.accounts.1c00534
  • Amano, S.; Borsley, S.; Leigh, D. A.; Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nature nanotechnology 2021, 16, 1057–1067. doi:10.1038/s41565-021-00975-4
  • Menendez, S. A hierarchical thermodynamic imperative drives the evolution of self-replicative life systems towards increased complexity. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.09.13.459895
  • Howlett, M. G.; Scanes, R. J. H.; Fletcher, S. P. Selection between Competing Self-Reproducing Lipids: Succession and Dynamic Activation. JACS Au 2021, 1, 1355–1361. doi:10.1021/jacsau.1c00138
  • Schwarz, P. S.; Laha, S.; Janssen, J.; Huss, T.; Boekhoven, J.; Weber, C. Parasitic behavior in competing chemically fueled reaction cycles. Chemical science 2021, 12, 7554–7560. doi:10.1039/d1sc01106e
  • Yang, S.; Schaeffer, G.; Mattia, E.; Markovitch, O.; Liu, K.; Hussain, A. S.; Ottelé, J.; Sood, A.; Otto, S. Chemical Fueling Enables Molecular Complexification of Self-Replicators*. Angewandte Chemie (International ed. in English) 2021, 60, 11344–11349. doi:10.1002/anie.202016196
Other Beilstein-Institut Open Science Activities