Cite the Following Article
Towards open-ended evolution in self-replicating molecular systems
Herman Duim and Sijbren Otto
Beilstein J. Org. Chem. 2017, 13, 1189–1203.
https://doi.org/10.3762/bjoc.13.118
How to Cite
Duim, H.; Otto, S. Beilstein J. Org. Chem. 2017, 13, 1189–1203. doi:10.3762/bjoc.13.118
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.6 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Liu, K.; Markovitch, O.; van Ewijk, C.; Knelissen, Y. K.; Kiani, A.; Eleveld, M.; Roos, W. H.; Otto, S. Selection for photocatalytic function through Darwinian evolution of synthetic self-replicators. Nature Catalysis 2025, 8, 1000–1009. doi:10.1038/s41929-025-01409-3
- Wenisch, M.; Li, Y.; Braun, M. G.; Eylert, L.; Späth, F.; Poprawa, S. M.; Rieger, B.; Synatschke, C. V.; Niederholtmeyer, H.; Boekhoven, J. Toward synthetic life—Emergence, growth, creation of offspring, decay, and rescue of fuel-dependent synthetic cells. Chem 2025, 11, 102578. doi:10.1016/j.chempr.2025.102578
- Eleveld, M. J.; Wu, J.; Liu, K.; Ottelé, J.; Markovitch, O.; Kiani, A.; Herold, L. C.; Lasorsa, A.; van der Wel, P. C. A.; Otto, S. Departure from randomness: Evolution of self-replicators that can self-sort through steric zipper formation. Chem 2025, 11, None–102374. doi:10.1016/j.chempr.2024.11.012
- Hasanzadeh, A.; Saeedi, S.; Dastanpour, L.; Biabanaki, Z. S.; Asadi, L.; Noori, H.; Hamblin, M. R.; Liu, Y.; Karimi, M. Self-replicating nanomaterials as a new generation of smart nanostructures. Biotechnology advances 2025, 81, 108565. doi:10.1016/j.biotechadv.2025.108565
- Kriebisch, C. M.; Bantysh, O.; Baranda Pellejero, L.; Belluati, A.; Bertosin, E.; Dai, K.; de Roy, M.; Fu, H.; Galvanetto, N.; Gibbs, J. M.; Gomez, S. S.; Granatelli, G.; Griffo, A.; Guix, M.; Gurdap, C. O.; Harth-Kitzerow, J.; Haugerud, I. S.; Häfner, G.; Jaiswal, P.; Javed, S.; Karimi, A.; Kato, S.; Kriebisch, B. A.; Laha, S.; Lee, P.-W.; Lipinski, W. P.; Matreux, T.; Michaels, T. C.; Poppleton, E.; Ruf, A.; Slootbeek, A. D.; Smokers, I. B.; Soria-Carrera, H.; Sorrenti, A.; Stasi, M.; Stevenson, A.; Thatte, A.; Tran, M.; van Haren, M. H.; Vuijk, H. D.; Wickham, S. F.; Zambrano, P.; Adamala, K. P.; Alim, K.; Andersen, E. S.; Bonfio, C.; Braun, D.; Frey, E.; Gerland, U.; Huck, W. T.; Jülicher, F.; Laohakunakorn, N.; Mahadavan, L.; Otto, S.; Saenz, J.; Schwille, P.; Göpfrich, K.; Weber, C. A.; Boekhoven, J. A roadmap toward the synthesis of life. Chem 2025, 11, 102399. doi:10.1016/j.chempr.2024.102399
- Brannetti, S.; Gentile, S.; Del Grosso, E.; Otto, S.; Ricci, F. Covalent Dynamic DNA Networks to Translate Multiple Inputs into Programmable Outputs. Journal of the American Chemical Society 2025, 147, 5755–5763. doi:10.1021/jacs.4c13854
- Kriebisch, C. M. E.; Kriebisch, B. A. K.; Langlais, J.; Maier, A. S.; Rieger, B.; Braun, D.; Boekhoven, J. The Multifunctional Role of Templates in Chemically Fueled Dynamic Combinatorial Libraries. ChemSystemsChem 2025, 7. doi:10.1002/syst.202400087
- Cvrtila, I.; Otto, S. Emergent Behavior of a Photoswitchable Solute in a Biphasic Solvent System. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202403157. doi:10.1002/chem.202403157
- Smokers, I. B. A.; Visser, B. S.; Lipiński, W. P.; Nakashima, K. K.; Spruijt, E. Phase‐Separated Droplets Can Direct the Kinetics of Chemical Reactions Including Polymerization, Self‐Replication and Oscillating Networks. ChemSystemsChem 2024, 7. doi:10.1002/syst.202400056
- Kriebisch, C. M. E.; Burger, L.; Zozulia, O.; Stasi, M.; Floroni, A.; Braun, D.; Gerland, U.; Boekhoven, J. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nature chemistry 2024, 16, 1240–1249. doi:10.1038/s41557-024-01570-5
- Cary, F. C. A.; Deamer, D. W.; Damer, B. F.; Fagents, S. A.; Ruttenberg, K. C.; Donachie, S. P. Could Life Have Started on Mars? Planetary Conditions That Assemble and Destroy Protocells. Life (Basel, Switzerland) 2024, 14, 415. doi:10.3390/life14030415
- Kroc, J. Emergent Information Processing: Observations, Experiments, and Future Directions. Software 2024, 3, 81–106. doi:10.3390/software3010005
- Komáromy, D.; Monzón, D. M.; Marić, I.; Monreal Santiago, G.; Ottelé, J.; Altay, M.; Schaeffer, G.; Otto, S. Generalist versus Specialist Self-Replicators. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202303837. doi:10.1002/chem.202303837
- Schoenmakers, L. L. J.; Reydon, T. A. C.; Kirschning, A. Evolution at the Origins of Life?. Life (Basel, Switzerland) 2024, 14, 175. doi:10.3390/life14020175
- Chan, B. W.-C. Towards Large-Scale Simulations of Open-Ended Evolution in Continuous Cellular Automata. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation, ACM, 2023; pp 127–130. doi:10.1145/3583133.3590670
- De Capitani, J.; Mutschler, H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023, 62, 1221–1232. doi:10.1021/acs.biochem.3c00023
- Vibhute, M. A.; Mutschler, H. A Primer on Building Life‐Like Systems. ChemSystemsChem 2022, 5. doi:10.1002/syst.202200033
- Slootbeek, A. D.; van Haren, M. H. I.; Smokers, I. B. A.; Spruijt, E. Growth, replication and division enable evolution of coacervate protocells. Chemical communications (Cambridge, England) 2022, 58, 11183–11200. doi:10.1039/d2cc03541c
- Xavier, J. C.; Kauffman, S. Small-molecule autocatalytic networks are universal metabolic fossils. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2022, 380, 20210244. doi:10.1098/rsta.2021.0244
- Synak, J.; Rybarczyk, A.; Blazewicz, J. RNA World Modeling: A Comparison of Two Complementary Approaches. Entropy (Basel, Switzerland) 2022, 24, 536. doi:10.3390/e24040536