Cite the Following Article
Biomimetic molecular design tools that learn, evolve, and adapt
David A Winkler
Beilstein J. Org. Chem. 2017, 13, 1288–1302.
https://doi.org/10.3762/bjoc.13.125
How to Cite
Winkler, D. A. Beilstein J. Org. Chem. 2017, 13, 1288–1302. doi:10.3762/bjoc.13.125
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mehraj, N.; Mateu, C.; Zsembinszki, G.; Cabeza, L. F. Optimizing the Design of TES Tanks for Thermal Energy Storage Applications Through an Integrated Biomimetic-Genetic Algorithm Approach. Biomimetics (Basel, Switzerland) 2025, 10, 197. doi:10.3390/biomimetics10040197
- Winkler, D. A.; Hughes, A. E.; Özkan, C.; Mol, A.; Würger, T.; Feiler, C.; Zhang, D.; Lamaka, S. V. Impact of inhibition mechanisms, automation, and computational models on the discovery of organic corrosion inhibitors. Progress in Materials Science 2025, 149, 101392. doi:10.1016/j.pmatsci.2024.101392
- Akhmedova, U. Harnessing technological algorithms for breakthroughs in natural sciences. In AIP Conference Proceedings, AIP Publishing, 2025; pp 40052–040052. doi:10.1063/5.0270927
- Solórzano Requejo, W.; Franco Martínez, F.; Aguilar Vega, C.; Zapata Martínez, R.; Martínez Cendrero, A.; Díaz Lantada, A. Fostering creativity in engineering design through constructive dialogues with generative artificial intelligence. Cell Reports Physical Science 2024, 5, 102157. doi:10.1016/j.xcrp.2024.102157
- Winkler, D. A. Probing the properties of molecules and complex materials using machine learning. Australian Journal of Chemistry 2022, 75, 906–922. doi:10.1071/ch22138
- Barrera, M. D. B.; Franco-Martínez, F.; Lantada, A. D. Artificial Intelligence Aided Design of Tissue Engineering Scaffolds Employing Virtual Tomography and 3D Convolutional Neural Networks. Materials (Basel, Switzerland) 2021, 14, 5278. doi:10.3390/ma14185278
- Lantada, A. D.; Franco-Martínez, F.; Hengsbach, S.; Rupp, F.; Thelen, R.; Bade, K. Artificial Intelligence Aided Design of Microtextured Surfaces: Application to Controlling Wettability. Nanomaterials (Basel, Switzerland) 2020, 10, 2287. doi:10.3390/nano10112287
- Sonkaria, S.; Khare, V. Exploring the landscape between synthetic and biosynthetic materials discovery: important considerations via systems connectivity, cooperation and scale-driven convergence in biomanufacturing. Biomanufacturing Reviews 2020, 5, 1–23. doi:10.1007/s40898-020-0007-7
- Feiler, C.; Mei, D.; Vaghefinazari, B.; Würger, T.; Meißner, R. H.; Luthringer-Feyerabend, B. J.; Winkler, D. A.; Zheludkevich, M. L.; Lamaka, S. V. In silico screening of modulators of magnesium dissolution. Corrosion Science 2020, 163, 108245. doi:10.1016/j.corsci.2019.108245
- Vasilevich, A.; de Boer, J. Robot-scientists will lead tomorrow's biomaterials discovery. Current Opinion in Biomedical Engineering 2018, 6, 74–80. doi:10.1016/j.cobme.2018.03.005
- Winkler, D. A. Predicting the Performance of Organic Corrosion Inhibitors. Metals 2017, 7, 553. doi:10.3390/met7120553