Cite the Following Article
Grip on complexity in chemical reaction networks
Albert S. Y. Wong and Wilhelm T. S. Huck
Beilstein J. Org. Chem. 2017, 13, 1486–1497.
https://doi.org/10.3762/bjoc.13.147
How to Cite
Wong, A. S. Y.; Huck, W. T. S. Beilstein J. Org. Chem. 2017, 13, 1486–1497. doi:10.3762/bjoc.13.147
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 634.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Le Cacheux, M.; Oddone, L. E.; Runikhina, S. A.; Kootstra, J.; Milias-Argeitis, A.; Harutyunyan, S. R. Experimentally Guided Iterative Parameter Estimation for Predictive Chemical Oscillator Models. Angewandte Chemie (International ed. in English) 2025, 64, e202511413. doi:10.1002/anie.202511413
- Le Cacheux, M.; Oddone, L. E.; Runikhina, S. A.; Kootstra, J.; Milias‐Argeitis, A.; Harutyunyan, S. R. Experimentally Guided Iterative Parameter Estimation for Predictive Chemical Oscillator Models. Angewandte Chemie 2025, 137. doi:10.1002/ange.202511413
- Komáromy, D.; Bismillah, A. N.; Puranik, V. A.; Fu, H.; Wong, A. S.; Aprahamian, I. Coupling synthetic negative feedback loops. Chem 2025, 102692. doi:10.1016/j.chempr.2025.102692
- Alagna, N.; Dúzs, B.; Dietrich, V.; Younesi, A. T.; Lehmann, L.; Ulbricht, R.; Köppl, H.; Walther, A.; Gerber, S. Deep Learning Reaction Framework (DLRN) for kinetic modeling of time-resolved data. Communications chemistry 2025, 8, 153. doi:10.1038/s42004-025-01541-y
- López-Pérez, P. A. State estimation for novel kinetic model oscillatory behavior with a time delay for bioethanol production. Instrumentation Science & Technology 2025, 53, 735–759. doi:10.1080/10739149.2025.2470134
- Lim, Y.; Park, G.; An, H.; Han, J.; Bae, J.; Kim, J.-H.; Lee, Y.; Kang, K.; Sung, J.; Kwon, S. Metabolism-inspired chemical reaction networks for chemically driven dissipative oligoesterification. Angewandte Chemie (International ed. in English) 2025, 64, e202425407. doi:10.1002/anie.202425407
- Lim, Y.; Park, G.; An, H.; Han, J.; Bae, J.; Kim, J.; Lee, Y.; Kang, K.; Sung, J.; Kwon, S. Metabolism‐inspired chemical reaction networks for chemically driven dissipative oligoesterification. Angewandte Chemie 2025, 137. doi:10.1002/ange.202425407
- da Cunha, É. F.; Kraakman, Y. J.; Kriukov, D. V.; van Poppel, T.; Stegehuis, C.; Wong, A. S. Y. Identify structures underlying out-of-equilibrium reaction networks with random graph analysis. Chemical science 2025, 16, 3099–3106. doi:10.1039/d4sc05234j
- Herrera-Castro, F.; del Río, J. A. Variational approach to chemical reactions beyond local equilibrium. Journal of Non-Equilibrium Thermodynamics 2024, 50, 185–197. doi:10.1515/jnet-2024-0072
- Alagna, N.; Dúzs, B.; Köppl, H.; Walther, A.; Gerber, S. Deep Learning Reaction Network: a machine learning framework for modeling time resolved data. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.07.31.606055
- Carder, H. M.; Occhialini, G.; Bistoni, G.; Riplinger, C.; Kwan, E. E.; Wendlandt, A. E. The sugar cube: Network control and emergence in stereoediting reactions. Science (New York, N.Y.) 2024, 385, 456–463. doi:10.1126/science.adp2447
- Valera, J. S.; López-Acosta, Á.; Hermans, T. M. Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle. Angewandte Chemie (International ed. in English) 2024, 63, e202406931. doi:10.1002/anie.202406931
- Valera, J. S.; López‐Acosta, Á.; Hermans, T. M. Photoinitiated Transient Self‐Assembly in a Catalytically Driven Chemical Reaction Cycle. Angewandte Chemie 2024, 136. doi:10.1002/ange.202406931
- Ghosh, S.; Baltussen, M. G.; Ivanov, N. M.; Haije, R.; Jakštaitė, M.; Zhou, T.; Huck, W. T. S. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chemical reviews 2024, 124, 2553–2582. doi:10.1021/acs.chemrev.3c00681
- Shklyaev, O. E.; Balazs, A. C. Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality. Nature nanotechnology 2023, 19, 146–159. doi:10.1038/s41565-023-01530-z
- Koyuncu, A. H.; Movilli, J.; Sahin, S.; Kriukov, D. V.; Huskens, J.; Wong, A. S. Y. Polylysine‐Coated Surfaces Drive Competition in Chemical Reaction Networks to Enable Molecular Information Processing. ChemSystemsChem 2023, 6. doi:10.1002/syst.202300030
- Krab-Hüsken, L. E.; Pei, L.; de Vries, P. G.; Lindhoud, S.; Paulusse, J. M. J.; Jonkheijm, P.; Wong, A. S. Y. Conceptual Modeling Enables Systems Thinking in Sustainable Chemistry and Chemical Engineering. Journal of Chemical Education 2023, 100, 4577–4584. doi:10.1021/acs.jchemed.3c00337
- Chieffo, C.; Shvetsova, A.; Skorda, F.; Lopez, A.; Fiore, M. The Origin and Early Evolution of Life: Homochirality Emergence in Prebiotic Environments. Astrobiology 2023, 23, 1368–1382. doi:10.1089/ast.2023.0007
- Ramezanpour, A.; Mashaghi, A. Learning capacity and function of stochastic reaction networks. Journal of Physics: Complexity 2023, 4, 35006–035006. doi:10.1088/2632-072x/acf264
- Sharma, C.; Maity, I.; Walther, A. pH-feedback systems to program autonomous self-assembly and material lifecycles. Chemical communications (Cambridge, England) 2023, 59, 1125–1144. doi:10.1039/d2cc06402b
Patents
- HUCK WILHELMUS THEODORUS STEFANUS; BALTUSSEN MATHIEU GÉRARD; ROBINSON WILLIAM EDWARD; DE JONG THIJS; GHOSH SOUVIK. A METHOD OF RESERVOIR COMPUTING AND A RESERVOIR COMPUTING SYSTEM. WO 2023075601 A1, May 4, 2023.