Main group mechanochemistry

  1. Agota A. Gečiauskaitė and
  2. Felipe García

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, 21 Nanyang Link, 637371, Singapore

  1. Corresponding author email

This article is part of the Thematic Series "Mechanochemistry".

Guest Editor: J. G. Hernández
Beilstein J. Org. Chem. 2017, 13, 2068–2077. doi:10.3762/bjoc.13.204
Received 15 May 2017, Accepted 08 Sep 2017, Published 05 Oct 2017

Abstract

Over the past decade, mechanochemistry has emerged as a powerful methodology in the search for sustainable alternatives to conventional solvent-based synthetic routes. Mechanochemistry has already been successfully applied to the synthesis of active pharmaceutical ingredients (APIs), organic compounds, metal oxides, coordination compounds and organometallic complexes. In the main group arena, examples of synthetic mechanochemical methodologies, whilst still relatively sporadic, are on the rise. This short review provides an overview of recent advances and achievements in this area that further validate mechanochemistry as a credible alternative to solution-based methods for the synthesis of main group compounds and frameworks.

Keywords: ball milling; main group; mechanochemical synthesis; mechanochemistry

Introduction

The original mainspring for the current expansion of solid state methodologies is the need for cleaner, safer and sustainable chemical transformations – particularly since raw materials are becoming ever scarcer. A straightforward strategy to addressing the above is to simply remove or minimise solvent usage throughout any designated synthetic routes. One way to achieve a solvent-free, or nearly solvent-free, synthetic route is via the use of solid-state mechanochemical methodologies. Mechanochemistry [1-10] is an emerging solid state methodology involving the use of little or no solvent, with the potential to challenge the current dominance of ‘wet’ chemical synthesis [11-15]. From a purely synthetic point of view, it is clear that complete eradication of solvents might not be entirely beneficial. Solvents ameliorate reactant interactions, control reaction rates, and aid heat dispersion in exothermic reactions inter alia. Needless to say, solvents are necessary for the extraction, separation, and purification of the final products and/or reaction intermediates [16], which are not always attainable by solvent-free methods [17]. However, the benefits associated with solvent-free or nearly solvent-free synthetic routes are becoming increasingly difficult to deny [11-13], even in the eyes of the most sceptical synthetic chemist.

Mechanochemistry is defined as the field of reactions caused by mechanochemical forces (e.g., compression, shear or friction) [18,19]. Examples of mechanochemical methods are manual and ball-milling grinding techniques [20-22]. Traditional manual mortar and pestle grinding methods are susceptible to variable factors, both human and environmental [23]. In contrast, modern milling technologies address these issues through the use of enclosed solvent-free reaction environments and well-defined experimental conditions throughout the mechanochemical process [24,25]. Amongst the commercially available ball milling designs [23,24], shaker and planetary mills are the most common mechanochemical apparatuses employed in synthetic laboratories [7,16,26,27].

The energy input may be adjusted by modifying parameters including milling time and frequency. Of equal importance in the reaction design is the choice of milling media (i.e., the milling jar loaded with one or more ball bearings). For example, milling balls made from denser materials (e.g., 2.3 g·cm−3 vs 15.6 g·cm−3 for Teflon and tungsten carbide, respectively) carry greater kinetic energy during the milling progress. The potential for metal leaching [28], rates of wearing [25], and/or promoting chemical reactions [9,29-33] must also be taken into account when selecting appropriate milling media. In addition to variable mechanical and milling media parameters, an alternative approach to controlling the mechanochemical process is via the use of small amounts of liquid and/or solid additives, termed ion- and liquid-assisted (ILAG) or liquid-assisted grinding (LAG), respectively [34,35]. These techniques, in contrast to “dry” milling, often offer advantages such as shorter reaction times and/or greater product selectivity [36].

In traditional solution-based methods, appropriate selection of solvent, temperature and reaction time will determine whether an intended chemical reaction proceeds, to what extent, and the rate at which it does so. In approaching the same chemical reaction by a mechanochemical route, an alternative set of parameters is fine-tuned to optimise reaction conditions (see Scheme 1). Such differences may have the capacity to create unique reactivity patterns and/or access to otherwise unattainable products [11-15].

[1860-5397-13-204-i1]

Scheme 1: Variables associated with ball-milling (left) and solvent-based methodologies (right).

Although often considered novel, in its broadest terms, mechanochemistry dates back two millennia [20,37,38]. However, it was not until the 19th century that associations between mechanical forces and chemical reactivity were drawn [39-45], and a century later the currently accepted definition of mechanochemistry was proposed [46]. Since then, and during the last 25 years, mechanochemical methods have been applied to various fields, including catalysis [47], organic synthesis [5,7,48,49], metal-organic frameworks (MOFs) [50,51], coordination [52], organometallic [11], supramolecular [53], environmental [54,55], APIs [56], medicinal [57], nanoscience [15], polymer [58-60] and enzymatic chemistry [61]. The recent advances made in mechanochemistry provide an exciting platform for synthetic chemists in the search of novel outcomes and optimal synthetic routes (see Scheme 2).

[1860-5397-13-204-i2]

Scheme 2: Examples of mechanochemically produced species (a [48], b [62], c [63], d [64], e [65], f [66], g [67], h [68]). The symbol for mechanochemical reactivity proposed by Hanusa et al. [11] is shown centrally.

Review

Main group mechanochemistry

Whilst mechanochemical studies have become increasingly popular (with recent reviews on mechanochemical synthesis by Rightmire and Hanusa [11], Do and Friščić [12], Hernández and Bolm [13], Wang [14], and James et al. [2]) there are relatively few studies concerning main group elements.

The development of new and novel main group frameworks and compounds is pivotal to shaping chemistry as a discipline, in addition to advancing neighbouring fields such as biomedical, materials and engineering sciences [69]. Moreover, main group compounds represent a large proportion of all commercial inorganic chemicals (ammonia, silicones, etc.) [70], and recent advances continue to propel the importance of this field in the 21st century [71]. For instance, developments in fundamental main group chemistry are pivotal in providing the necessary knowledge and tools for the more sustainable chemical processes, from “blue-skies” to applied research and, eventually, integration into industrial processes.

Herein, we aim to provide an overview of recent advances in this area and an outlook on future directions within the realm of main group molecular systems.

Developments in the area of materials science have already demonstrated benefits of implementing mechanochemical methods [72]. In the context of main group compounds, recent studies have highlighted efficient routes to: (i) alkaline earth carbides and their intercalation compounds, including the first successful synthesis of Mg2C3 from its elements [73,74]; (ii) nanomaterials, where main group elements act either as a matrix or a dopant, for catalytic applications [75,76]; and (iii) MOFS containing alkaline earth metals [77,78].

Of particular note are the high yielding syntheses of non-solvated AlH3 from LiAlH4 and AlCl3 under mild conditions, and kinetic studies on the synthesis of alkaline-earth metal amides. These compounds – promising candidates for fuel-cell technologies based on chemically stored hydrogen – highlight the potential of such syntheses in the development of clean energy solutions [79,80].

Within the area of molecular synthesis, the handful of reported examples fall into two general categories, those that provide enhanced synthetic routes, and those that provide novel synthetic outcomes [81].

Mechanochemical enhanced synthesis

Optimising the route to a desired reaction product is a principle priority of synthetic chemists, and ball milling often offers attractive opportunities to do so.

In the field of organometallic chemistry, we highlight the large-scale synthesis of SrCp′2(OEt2) (Cp′ = C5Me4(n-Pr)) (1) [82], an ideal precursor for the chemical vapour deposition (CVD) of strontium-based semiconductors – a key material in memory devices [83]. Previously, this compound could only be obtained in small-scale via salt metathesis reactions due to poor starting material (SrI2 and K[Cp′]) solubility in ether solution. LAG provides a high yielding synthetic methodology circumventing the scalability issues associated with the inefficient diffusion of reactants in large-scale solution-based methods (see Scheme 3).·

[1860-5397-13-204-i3]

Scheme 3: Mechanochemical synthesis of SrCp′2(OEt2) (Cp′ = C5Me4(n-Pr)).

Also noteworthy is the multistep solvent-free mechanochemical route to indium(III) complexes featuring aryl bis(imino)acenaphthene (Ar-BIAN) ligands [84]. Ar-BIAN ligands are versatile π-acceptors and have been widely employed for catalysis. These ligands are typically synthesised by condensation reactions between acenaphthoquinone and the corresponding aniline derivative under acidic conditions, involving the use of transition-metal templates [85]. The acid-catalysed ball-milling of acenaphthoquinone with aniline derivatives in the presence of an organic catalyst was able to produce the desired Ar-BIAN ligands 2 and 3, respectively, in good yields (see Scheme 4). Here, mechanochemistry bypasses the use of templating agent transition metals, shortening the synthetic route and reducing its environmental impact. Their respective indium(III) BIAN complexes 4 and 5 were also obtained by further milling equimolar quantities of the relevant BIAN ligand (2 and 3, respectively) and InCl3. Performing both reactions at 180 °C in the same reaction vessel without milling lead to thermal decomposition, illustrating the requirement of mechanochemical forces for successful reaction completion. A rare example of a one-pot multistep ball milling reaction is the case of an electron-rich aniline derivative that produced 4 in good yield without the need for ligand isolation. Previously reported examples typically employ “preformed” ligands and metal complexes [68,86], raising the orthogonality of multistep mechanochemical synthesis and widening its applicability.

[1860-5397-13-204-i4]

Scheme 4: Mechanochemical synthesis of the Ar-BIAN ligands and indium(III) complexes (top). One-pot synthesis of an indium complex (bottom).

A significant example of the transformative potential of mechanochemistry is its ability to produce metal complexes directly from bulk metal or metal oxides [66]. Within this context, the LAG synthesis of germanes (GeR4) directly from germanium metal or germanium dioxide (GeO2) was recently reported [87]. Milling of germanium powder or GeO2 with quinone or catechol, respectively, in the presence of a Lewis base under LAG conditions, produced a series of germanium complexes (see Scheme 5). These complexes are inherently versatile, capable of acting as chemical intermediates for the downstream synthesis of germanes 7, thus providing a sustainable alternative to the use of GeCl4. Notably, this method can generate highly pure GeH4 for CVD applications under room temperature conditions [88,89].

[1860-5397-13-204-i5]

Scheme 5: Synthesis of germanes from germanium (Ge) or germanium oxide (GeO2).

In addition to organometallics, mechanochemistry has emerged as a technique with great promise for the construction of frameworks based on non-carbon backbones [90], such as those of the phosphazane family [91]. The unique chemical versatility of these P–N frameworks – provided by the diversity of their topological arrangements – provides potential in numerous applications [92]. However, these species remain typically arduous to synthesize and isolate, since phosphazane arrangements are generally highly air- and moisture-sensitive [93,94], and their halogenated precursors are incompatible with protic solvents. Mechanochemistry therefore offers an elegant synthetic route by circumventing solvent compatibility issues, the tedious processes associated with the use of strict anhydrous solvents, and by minimizing unwanted side-products (see Scheme 6) [95].

[1860-5397-13-204-i6]

Scheme 6: Ball-milling nucleophilic substitution reactions to produce acyclic and cyclic cyclodiphosphazanes.

Mechanochemistry picks the lock

The capacity of mechanochemistry to produce unique reaction outcomes and/or product distributions, compared to those obtained by solution-based methods, is an exciting feat [62,96].

Hanusa et al. reported the successful application of ball-milling for the synthesis of an elusive [97] unsolvated tris(allyl)aluminium complex [98]. Grinding 1,3-bis(trimethylsilyl)allylpotassium salt with AlX3 (X = Cl, Br, I) produced the desired unsolvated product 16 in high yields and on multigram scales. Remarkably, the synthesis of this long sought-after compound was carried out in a simple set-up, consisting of a round bottom flask loaded with steel ball bearings, connected to a rotatory evaporator as a milling device [99]. Compound 16 displays a higher reactivity than its solvated counterparts, attributed to the coordinatively unsaturated Al centre (i.e., three-coordinate Al). Only in the absence of solvents can this be achieved.

Similar studies using group 15 halides (AsI3 and SbCl3) have shown that selection of solution or mechanochemical conditions influence product stereoisomer distributions. In this case, the mechanochemical route increases the C1:C3 stereoisomer ratio in complexes 17 and 18 for As and Sb, respectively (see Scheme 7) [100]. The ability to manipulate isomeric distribution outcomes offers obvious advantages in the application of synthetic mechanochemistry to pharmaceutical and catalysis industries.

[1860-5397-13-204-i7]

Scheme 7: Mechanochemical reactions of potassium 1,3-bis(trimethylsillylallyl) with group 13 (top) and 15 (bottom) halides.

Returning to phosphazane chemistry, the structure of the P–N backbone is controlled by steric factors, a textbook example of which being the adamantoid P4(NR)6 frameworks. These species are synthesised by direct reaction of PCl3 with sterically unhindered amines RNH2 (R= Me, Et, iPr, Bz) [101] or by isomerization of their less thermodynamically-stable macrocyclic [{P(μ-NR)}2(μ-NR)]2 counterparts. In the latter, the isopropyl (iPr) substituted macrocycle [{P(μ-NiPr)2}2(μ-NiPr)]2 19 readily isomerises into the adamantoid framework, P4(NiPr)6 20, upon heating [102]. The non-viability of the tert-butyl (t-Bu) substituted adamantoid framework [103] has been rationalised on steric grounds, due to its highly sterically-encumbered nature [103-105]. ILAG milling of [{P(μ-Nt-Bu)2}2(μ-Nt-Bu)]2 21 in the presence of LiCl readily yielded the adamantoid P4(Nt-Bu)6 22 after 90 min, in strong contrast to previous efforts involving prolonged heating (24 days at 150 °C) or under reflux in a range of solvents with identical amounts of salt additive (see Scheme 8). The ease of this transformation by ball milling illustrates the potential of such approaches towards established chemical syntheses [106].

[1860-5397-13-204-i8]

Scheme 8: Synthesis of adamantoid phosphazane framework from its double-decker isomer for R = iPr and t-Bu (left and right, respectively).

Conclusion

The use and study of mechanochemical methods have expanded rapidly over the last two decades, and continues to progress as a well-established area of research within chemical and materials sciences. Whilst the synthetic potential of the ball-milling concept has, in our opinion, become indisputable, advancing from representing an anecdotic alternative to solution-based methods, towards becoming a universally adopted methodology by the main group community remains a considerable challenge [69]. Advancement of our current mechanistic understanding of mechanochemical methods is essential if we are to incorporate it as a mainstream tool for synthetic and materials chemists alike [77,107-111]. Theoretical and systematic studies that elucidate the kinetic and thermodynamic driving forces of mechanochemical reactions are undergoing and will be imperative to achieving this goal [106,112-114]. Areas in which we anticipate mechanochemistry will show particular strength in: (i) the synthesis of highly air- and moisture-sensitive compounds, since many are incompatible with a wide range of protic solvents [95]; and (ii) the synthesis of unsolvated species, where chemical reactivity might be hindered by the presence of strongly bound solvent molecules within their coordination sphere [98].

In this short review, we have presented basic underlying concepts followed by recent advances and highlights of mechanochemistry in the context of main group synthesis with the hope of encouraging and accelerating the endorsement of mechanochemistry by the main group and wider synthetic communities.

Acknowledgements

Our work on this field is supported by A*STAR AME IRG (A1783c0003), NTU start-up grant (M4080552) and MOE Tier 1 grant (M4011441).

References

  1. Mechanochemistry is herein considered within the context of transformations conducted by bulk milling or grinding. This area of mechanochemical research is distinct from the popular use of ultrasonic irradiation for transformations of mechanophores embedded in polymer chains or studies of individual molecules using atomic force spectroscopy.
    Return to citation in text: [1]
  2. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413–447. doi:10.1039/C1CS15171A
    Return to citation in text: [1] [2]
  3. Boldyreva, E. Chem. Soc. Rev. 2013, 42, 7719–7738. doi:10.1039/c3cs60052a
    Return to citation in text: [1]
  4. Braga, D.; Maini, L.; Grepioni, F. Chem. Soc. Rev. 2013, 42, 7638–7648. doi:10.1039/c3cs60014a
    Return to citation in text: [1]
  5. Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B. Chem. Soc. Rev. 2011, 40, 2317–2329. doi:10.1039/c0cs00195c
    Return to citation in text: [1] [2]
  6. Friščić, T. Chem. Soc. Rev. 2012, 41, 3493–3510. doi:10.1039/c2cs15332g
    Return to citation in text: [1]
  7. Rodríguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Adv. Synth. Catal. 2007, 349, 2213–2233. doi:10.1002/adsc.200700252
    Return to citation in text: [1] [2] [3]
  8. Zhu, S.-E.; Li, F.; Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7535–7570. doi:10.1039/c3cs35494f
    Return to citation in text: [1]
  9. Chen, L.; Lemma, B. E.; Rich, J. S.; Mack, J. Green Chem. 2014, 16, 1101–1103. doi:10.1039/C3GC41847B
    Return to citation in text: [1] [2]
  10. Mottillo, C.; Friščić, T. Molecules 2017, 22, 144. doi:10.3390/molecules22010144
    Return to citation in text: [1]
  11. Rightmire, N. R.; Hanusa, T. P. Dalton Trans. 2016, 45, 2352–2362. doi:10.1039/C5DT03866A
    Return to citation in text: [1] [2] [3] [4] [5] [6]
  12. Do, J.-L.; Friščić, T. ACS Cent. Sci. 2017, 3, 13–19. doi:10.1021/acscentsci.6b00277
    Return to citation in text: [1] [2] [3] [4]
  13. Hernández, J. G.; Bolm, C. J. Org. Chem. 2017, 82, 4007–4019. doi:10.1021/acs.joc.6b02887
    Return to citation in text: [1] [2] [3] [4]
  14. Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7668–7700. doi:10.1039/c3cs35526h
    Return to citation in text: [1] [2] [3]
  15. Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.; Streletskii, A.; Wieczorek-Ciurowa, K. Chem. Soc. Rev. 2013, 42, 7571–7637. doi:10.1039/c3cs35468g
    Return to citation in text: [1] [2] [3]
  16. Tanaka, K. Solvent-free Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim, 2009.
    Return to citation in text: [1] [2]
  17. Friščić, T.; Julien, P. A.; Mottillo, C. Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs). Green Technologies for the Environment; ACS Symposium Series, Vol. 1186; American Chemical Society, 2014; pp 161–183.
    Return to citation in text: [1]
  18. Horie, K.; Barón, M.; Fox, R. B.; He, J.; Hess, M.; Kahovec, J.; Kitayama, T.; Kubisa, P.; Maréchal, E.; Mormann, W.; Stepto, R. F. T.; Tabak, D.; Vohlídal, J.; Wilks, E. S.; Work, W. J. Pure Appl. Chem. 2004, 76, 889–906. doi:10.1351/pac200476040889
    Return to citation in text: [1]
  19. Fernández-Bertran, J. F. Pure Appl. Chem. 1999, 71, 581–586. doi:10.1351/pac199971040581
    Return to citation in text: [1]
  20. Takacs, L. Chem. Soc. Rev. 2013, 42, 7649–7659. doi:10.1039/c2cs35442j
    Return to citation in text: [1] [2]
  21. Kipp, S.; Šepelák, V.; Becker, K. D. Chem. Unserer Zeit 2005, 39, 384–392. doi:10.1002/ciuz.200500355
    Return to citation in text: [1]
  22. Stolle, A.; Schmidt, R.; Jacob, K. Faraday Discuss. 2014, 170, 267–286. doi:10.1039/C3FD00144J
    Return to citation in text: [1]
  23. Schmidt, R.; Burmeister, C. F.; Baláž, M.; Kwade, A.; Stolle, A. Org. Process Res. Dev. 2015, 19, 427–436. doi:10.1021/op5003787
    Return to citation in text: [1] [2]
  24. Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering; Springer-Verlag: Berlin, 2008.
    Return to citation in text: [1] [2]
  25. Burmeister, C. F.; Kwade, A. Chem. Soc. Rev. 2013, 42, 7660–7667. doi:10.1039/c3cs35455e
    Return to citation in text: [1] [2]
  26. Gorrasi, G.; Sorrentino, A. Green Chem. 2015, 17, 2610–2625. doi:10.1039/C5GC00029G
    Return to citation in text: [1]
  27. Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem. Rev. 2009, 109, 4140–4182. doi:10.1021/cr9001098
    Return to citation in text: [1]
  28. Štefanić, G.; Krehula, S.; Štefanić, I. Chem. Commun. 2013, 49, 9245–9247. doi:10.1039/c3cc44803g
    Return to citation in text: [1]
  29. Rak, M. J.; Saadé, N. K.; Friščić, T.; Moores, A. Green Chem. 2014, 16, 86–89. doi:10.1039/C3GC41827H
    Return to citation in text: [1]
  30. Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J. Green Chem. 2009, 11, 1821–1825. doi:10.1039/b915669k
    Return to citation in text: [1]
  31. Cook, T. L.; Walker, J. A., Jr.; Mack, J. Green Chem. 2013, 15, 617–619. doi:10.1039/c3gc36720g
    Return to citation in text: [1]
  32. Tan, D.; Štrukil, V.; Mottillo, C.; Friščić, T. Chem. Commun. 2014, 50, 5248–5250. doi:10.1039/C3CC47905F
    Return to citation in text: [1]
  33. Sawama, Y.; Kawajiri, T.; Niikawa, M.; Goto, R.; Yabe, Y.; Takahashi, T.; Marumoto, T.; Itoh, M.; Kimura, Y.; Monguchi, Y.; Kondo, S.-i.; Sajiki, H. ChemSusChem 2015, 8, 3773–3776. doi:10.1002/cssc.201501019
    Return to citation in text: [1]
  34. Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. CrystEngComm 2009, 11, 418–426. doi:10.1039/B815174A
    Return to citation in text: [1]
  35. Friščić, T.; Reid, D. G.; Halasz, I.; Stein, R. S.; Dinnebier, R. E.; Duer, M. J. Angew. Chem., Int. Ed. 2010, 49, 712–715. doi:10.1002/anie.200906583
    Return to citation in text: [1]
  36. Bowmaker, G. A. Chem. Commun. 2013, 49, 334–348. doi:10.1039/C2CC35694E
    Return to citation in text: [1]
  37. Theophrastus wrote „On Stones” ca. 315 B.C. This book contains references to the reduction of cinnabar (a mercury ore) to mercury metal by grinding the ore in a copper mortar and pestle.
    Return to citation in text: [1]
  38. Takacs, L. JOM 2000, 52, 12–13. doi:10.1007/s11837-000-0106-0
    Return to citation in text: [1]
  39. Faraday, M. Q. J. Sci., Lit., Arts 1820, 8, 374–376.
    Return to citation in text: [1]
  40. Lea, M. C. Br. J. Photogr. 1866, 13, 84.
    Return to citation in text: [1]
  41. Lea, M. C. Am. J. Sci. 1893, 46, 413–420. doi:10.2475/ajs.s3-46.276.413
    Return to citation in text: [1]
  42. Ling, A. R.; Baker, J. L. J. Chem. Soc., Trans. 1893, 63, 1314. doi:10.1039/CT8936301314
    Return to citation in text: [1]
  43. Takacs, L. J. Therm. Anal. Calorim. 2007, 90, 81–84. doi:10.1007/s10973-007-8479-8
    Return to citation in text: [1]
  44. The term “mechanochemistry” was first introduced by Wilhelm Ostwald in the Textbook of General Chemistry in 1891, where mechanochemistry was considered as a part of physical chemistry such as thermochemistry, electrochemistry.
    Return to citation in text: [1]
  45. Ostwald, W. Handbuch der Allgemeinen Chemie; Akademische Verlagsgesellschaft mbH: Leipzig, 1919; Vol. 1.
    Return to citation in text: [1]
  46. Heinicke, G. Tribochemistry; Akademie Verlag: Berlin, 1984.
    Return to citation in text: [1]
  47. Bruckmann, A.; Krebs, A.; Bolm, C. Green Chem. 2008, 10, 1131–1141. doi:10.1039/b812536h
    Return to citation in text: [1]
  48. Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Nature 1997, 387, 583–586. doi:10.1038/42439
    Return to citation in text: [1] [2]
  49. Hernández, J. G.; Friščić, T. Tetrahedron Lett. 2015, 56, 4253–4265. doi:10.1016/j.tetlet.2015.03.135
    Return to citation in text: [1]
  50. Friščić, T. Metal-Organic Frameworks: Mechanochemical Synthesis Strategies. Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Chichester, 2014; pp 1–19. doi:10.1002/9781119951438.eibc2202
    Return to citation in text: [1]
  51. Lazuen-Garay, A.; Pichon, A.; James, S. L. Chem. Soc. Rev. 2007, 36, 846–855. doi:10.1039/b600363j
    Return to citation in text: [1]
  52. Thabet, S. K.; Tayim, H. A.; Karkanawi, M. U. Inorg. Nucl. Chem. Lett. 1972, 8, 211–213. doi:10.1016/0020-1650(72)80114-4
    Return to citation in text: [1]
  53. Hsu, C.-C.; Chen, N.-C.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew. Chem., Int. Ed. 2008, 47, 7475–7478. doi:10.1002/anie.200803056
    Return to citation in text: [1]
  54. Rowlands, S. A.; Hall, A. K.; McCormick, P. G.; Street, R.; Hart, R. J.; Ebell, G. F.; Donecker, P. Nature 1994, 367, 223. doi:10.1038/367223a0
    Return to citation in text: [1]
  55. Nomura, Y.; Nakai, S.; Hosomi, M. Environ. Sci. Technol. 2005, 39, 3799–3804. doi:10.1021/es049446w
    Return to citation in text: [1]
  56. Jones, W.; Eddleston, M. D. Faraday Discuss. 2014, 170, 9–34. doi:10.1039/C4FD00162A
    Return to citation in text: [1]
  57. Tan, D.; Loots, L.; Friščić, T. Chem. Commun. 2016, 52, 7760–7781. doi:10.1039/C6CC02015A
    Return to citation in text: [1]
  58. Ravnsbæk, J. B.; Swager, T. M. ACS Macro Lett. 2014, 3, 305–309. doi:10.1021/mz500098r
    Return to citation in text: [1]
  59. Grätz, S.; Borchardt, L. RSC Adv. 2016, 6, 64799–64802. doi:10.1039/C6RA15677K
    Return to citation in text: [1]
  60. Ohn, N.; Shin, J.; Kim, S. S.; Kim, J. G. ChemSusChem 2017, in press. doi:10.1002/cssc.201700873
    Return to citation in text: [1]
  61. Hernández, J. G.; Ardila-Fierro, K. J.; Crawford, D.; James, S. L.; Bolm, C. Green Chem. 2017, 19, 2620–2625. doi:10.1039/C7GC00615B
    Return to citation in text: [1]
  62. Štrukil, V.; Gracin, D.; Magdysyuk, O. V.; Dinnebier, R. E.; Friščić, T. Angew. Chem., Int. Ed. 2015, 54, 8440–8443. doi:10.1002/anie.201502026
    Return to citation in text: [1] [2]
  63. Zhao, Y.; Rocha, S. V.; Swager, T. M. J. Am. Chem. Soc. 2016, 138, 13834–13837. doi:10.1021/jacs.6b09011
    Return to citation in text: [1]
  64. Chen, L.; Bovee, M. O.; Lemma, B. E.; Keithley, K. S. M.; Pilson, S. L.; Coleman, M. G.; Mack, J. Angew. Chem., Int. Ed. 2015, 54, 11084–11087. doi:10.1002/anie.201504236
    Return to citation in text: [1]
  65. Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, V. O.; Dinnebier, R. E.; Halasz, I.; Friščić, T. Nat. Commun. 2015, 6, No. 6662. doi:10.1038/ncomms7662
    Return to citation in text: [1]
  66. Beillard, A.; Metro, T.-X.; Bantreil, X.; Martinez, J.; Lamaty, F. Chem. Sci. 2017, 8, 1086–1089. doi:10.1039/C6SC03182J
    Return to citation in text: [1] [2]
  67. Juribašić, M.; Užarević, K.; Gracin, D.; Ćurić, M. Chem. Commun. 2014, 50, 10287–10290. doi:10.1039/C4CC04423A
    Return to citation in text: [1]
  68. Hernández, J. G.; Butler, I. S.; Friščić, T. Chem. Sci. 2014, 5, 3576–3582. doi:10.1039/C4SC01252F
    Return to citation in text: [1] [2]
  69. Chivers, T. Comments Inorg. Chem. 2009, 30, 131–176. doi:10.1080/02603590903385752
    Return to citation in text: [1] [2]
  70. Thomson, R., Ed. Industrial Inorganic Chemicals: Production and Uses; The Royal Society of Chemistry: Cambridge, 1995.
    Return to citation in text: [1]
  71. Aldridge, S.; Jones, C. Chem. Soc. Rev. 2016, 45, 763–764. doi:10.1039/C6CS90014C
    Return to citation in text: [1]
  72. Xu, C.; De, S.; Balu, A. M.; Ojeda, M.; Luque, R. Chem. Commun. 2015, 51, 6698–6713. doi:10.1039/C4CC09876E
    Return to citation in text: [1]
  73. The alkaline earth carbide CaC2 is an industrial source of acetylene, however, non-mechanochemical methods of its production were unsuitable on a commercial scale due to the requirement of maintaining a very high temperature, oxygen-free atmosphere, and use of hydrogen cyanide gas as reagent. Hence ball milling provides a more efficient and green route to these molecular species.
    Return to citation in text: [1]
  74. Hick, S. M.; Griebel, C.; Blair, R. G. Inorg. Chem. 2009, 48, 2333–2338. doi:10.1021/ic8022437
    Return to citation in text: [1]
  75. Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Nano Lett. 2014, 14, 4573–4580. doi:10.1021/nl501617j
    Return to citation in text: [1]
  76. Kim, M.-J.; Jeon, I.-Y.; Seo, J.-M.; Dai, L.; Baek, J.-B. ACS Nano 2014, 8, 2820–2825. doi:10.1021/nn4066395
    Return to citation in text: [1]
  77. Al-Terkawi, A.-A.; Scholz, G.; Emmerling, F.; Kemnitz, E. Cryst. Growth Des. 2016, 16, 1923–1933. doi:10.1021/acs.cgd.5b01457
    Return to citation in text: [1] [2]
  78. Al-Terkawi, A.-A.; Scholz, G.; Buzanich, A. G.; Reinsch, S.; Emmerling, F.; Kemnitz, E. Dalton Trans. 2017, 46, 6003–6012. doi:10.1039/C7DT00734E
    Return to citation in text: [1]
  79. Gupta, S.; Kobayashi, T.; Hlova, I. Z.; Goldston, J. F.; Pruski, M.; Pecharsky, V. K. Green Chem. 2014, 16, 4378–4388. doi:10.1039/C4GC00998C
    Return to citation in text: [1]
  80. Garroni, S.; Takacs, L.; Leng, H.; Delogu, F. Chem. Phys. Lett. 2014, 608, 80–83. doi:10.1016/j.cplett.2014.05.071
    Return to citation in text: [1]
  81. To the best of our knowledge, there are no published reports of solvent removal being detrimental throughout main group molecular synthesis. For published results in the area of organometallic synthesis please see section 3.2 in ref [11].
    Return to citation in text: [1]
  82. Peters, D. W.; Blair, R. G. Faraday Discuss. 2014, 170, 83–91. doi:10.1039/C3FD00157A
    Return to citation in text: [1]
  83. Warusawithana, M. P.; Cen, C.; Sleasman, C. R.; Woicik, J. C.; Li, Y.; Kourkoutis, L. F.; Klug, J. A.; Li, H.; Ryan, P.; Wang, L.-P.; Bedzyk, M.; Muller, D. A.; Chen, L.-Q.; Levy, J.; Schlom, D. G. Science 2009, 324, 367–370. doi:10.1126/science.1169678
    Return to citation in text: [1]
  84. Wang, J.; Ganguly, R.; Yongxin, L.; Díaz, J.; Soo, H. S.; García, F. Dalton Trans. 2016, 45, 7941–7946. doi:10.1039/C6DT00978F
    Return to citation in text: [1]
  85. Ragaini, F.; Cenini, S.; Tollari, S.; Tummolillo, G.; Beltrami, R. Organometallics 1999, 18, 928–942. doi:10.1021/om980843n
    Return to citation in text: [1]
  86. Chow, E. H. H.; Strobridge, F. C.; Friščić, T. Chem. Commun. 2010, 46, 6368–6370. doi:10.1039/c0cc01337d
    Return to citation in text: [1]
  87. Glavinović, M.; Krause,, M.; Yang,, L.; McLeod, J. A.; Liu, L.; Baines, K. M.; Friščić, T.; Lumb, J.-P. Sci. Adv. 2017, 3, e1700149. doi:10.1126/sciadv.1700149
    Return to citation in text: [1]
  88. Rusotti, R. Methods of synthesis of gaseous germane. U.S. Patent US 4,668,502, May 26, 1987.
    Return to citation in text: [1]
  89. Amadoruge, M. L.; Weinert, C. S. Chem. Rev. 2008, 108, 4253–4294. doi:10.1021/cr800197r
    Return to citation in text: [1]
  90. Hardacre, C.; Huang, H.; James, S. L.; Migaud, M. E.; Norman, S. E.; Pitner, W. R. Chem. Commun. 2011, 47, 5846–5848. doi:10.1039/c1cc11025j
    Return to citation in text: [1]
  91. In this context, the term ‘phosphazane’ refers to phosphorus(III) derivatives unless otherwise stated.
    Return to citation in text: [1]
  92. Balakrishna, M. S. Dalton Trans. 2016, 45, 12252–12282. doi:10.1039/C6DT01121G
    Return to citation in text: [1]
  93. Scherer, O. J.; Anselmann, R.; Paine, R. T.; Karthikeyan, S. Tervalent Phosphorus–Nitrogen Ring Compounds. Inorganic Syntheses; John Wiley & Sons, Inc., 2007; Vol. 25, pp 7–12.
    Return to citation in text: [1]
  94. Shi, X. Y.; Liang, R. Z.; Martin, K. A.; Weston, N.; Gonzalez-Calera, S.; Ganguly, R.; Li, Y.; Lu, Y.; Ribeiro, A. J. M.; Ramos, M. J.; Fernandes, P. A.; García, F. Inorg. Chem. 2015, 54, 6423–6432. doi:10.1021/acs.inorgchem.5b00735
    Return to citation in text: [1]
  95. Sim, Y.; Shi, Y. X.; Ganguly, R.; Li, Y.; García, F. Chem. – Eur. J. 2017, 23, 11279–11285. doi:10.1002/chem.201701619
    Return to citation in text: [1] [2]
  96. Katritzky, A. R.; Witek, R. M.; Rodriguez-Garcia, V.; Mohapatra, P. P.; Rogers, J. W.; Cusido, J.; Abdel-Fattah, A. A. A.; Steel, P. J. J. Org. Chem. 2005, 70, 7866–7881. doi:10.1021/jo050670t
    Return to citation in text: [1]
  97. Grignard, V.; Jenkins, R. L. Bull. Soc. Chim. Fr. 1925, 37, 1376–1385.
    Return to citation in text: [1]
  98. Rightmire, N. R.; Hanusa, T. P.; Rheingold, A. L. Organometallics 2014, 33, 5952–5955. doi:10.1021/om5009204
    Return to citation in text: [1] [2]
  99. Higher yielding and higher scales were also possible using an IKKA tube dispenser (15 min reaction time with 85% yield) and planetary ball mill (5 min at 600 rpm with 88% yield) on a multigram scale.
    Return to citation in text: [1]
  100. Rightmire, N. R.; Bruns, D. L.; Hanusa, T. P.; Brennessel, W. W. Organometallics 2016, 35, 1698–1706. doi:10.1021/acs.organomet.6b00151
    Return to citation in text: [1]
  101. Hill, T. G.; Haltiwanger, R. C.; Thompson, M. L.; Katz, S. A.; Norman, A. D. Inorg. Chem. 1994, 33, 1770–1777. doi:10.1021/ic00087a009
    Return to citation in text: [1]
  102. Scherer, O. J.; Andres, K.; Krüger, C.; Tsay, Y.-H.; Wolmerhäser, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 571–572. doi:10.1002/anie.198005711
    Return to citation in text: [1]
  103. Brask, J. K.; Chivers, T.; Krahn, M. L.; Parvez, M. Inorg. Chem. 1999, 38, 290–295. doi:10.1021/ic980117c
    Return to citation in text: [1] [2]
  104. Bashall, A.; Doyle, E. L.; Garcia, F.; Lawson, G. T.; Linton, D. J.; Moncrieff, D.; McPartlin, M.; Woods, A. D.; Wright, D. S. Chem. – Eur. J. 2002, 8, 5723–5731. doi:10.1002/1521-3765(20021216)8:24<5723::AID-CHEM5723>3.0.CO;2-D
    Return to citation in text: [1]
  105. Shi, Y. X.; Liang, R. Z.; Martin, K. A.; Star, D. G.; Díaz, J.; Li, X. Y.; Ganguly, R.; García, F. Chem. Commun. 2015, 51, 16468–16471. doi:10.1039/C5CC06034F
    Return to citation in text: [1]
  106. Shi, Y. X.; Xu, K.; Clegg, J. K.; Ganguly, R.; Hirao, H.; Friščić, T.; García, F. Angew. Chem., Int. Ed. 2016, 55, 12736–12740. doi:10.1002/anie.201605936
    Return to citation in text: [1] [2]
  107. Michalchuk, A. A. L.; Tumanov, I. A.; Drebushchak, V. A.; Boldyreva, E. V. Faraday Discuss. 2014, 170, 311–335. doi:10.1039/C3FD00150D
    Return to citation in text: [1]
  108. Boldyreva, E. Curr. Pharm. Des. 2016, 22, 4981–5000. doi:10.2174/1381612822666160804093120
    Return to citation in text: [1]
  109. Tumanov, I. A.; Michalchuk, A. A. L.; Politov, A. A.; Boldyreva, E. V.; Boldyrev, V. V. CrystEngComm 2017, 19, 2830–2835. doi:10.1039/C7CE00517B
    Return to citation in text: [1]
  110. Michalchuk, A. A. L.; Tumanov, I. A.; Sumit, K.; Kimber, S. A. J.; Pulham, C. R.; Boldireva, E. V. Adv. Sci. 2017, 1700132. doi:10.1002/advs.201700132
    Return to citation in text: [1]
  111. Andersen, J. M.; Mack,, J. Chem. Sci. 2017, 8, 5447–5453. doi:10.1039/C7SC00538E
    Return to citation in text: [1]
  112. Belenguer, A. M.; Friščić, T.; Day, G. M.; Sanders, J. K. M. Chem. Sci. 2011, 2, 696–700. doi:10.1039/c0sc00533a
    Return to citation in text: [1]
  113. Bygrave, P. J.; Case, D. H.; Day, G. M. Faraday Discuss. 2014, 170, 41–57. doi:10.1039/C3FD00162H
    Return to citation in text: [1]
  114. Belenguer, A. M.; Lampronti, G. I.; Cruz-Cabeza, A. J.; Hunter, C. A.; Sanders, J. K. M. Chem. Sci. 2016, 7, 6617–6627. doi:10.1039/C6SC03457H
    Return to citation in text: [1]

© 2017 Gečiauskaitė and García; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

 
Back to Article List