Cite the Following Article
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy
Monica Ferro, Franca Castiglione, Nadia Pastori, Carlo Punta, Lucio Melone, Walter Panzeri, Barbara Rossi, Francesco Trotta and Andrea Mele
Beilstein J. Org. Chem. 2017, 13, 182–194.
https://doi.org/10.3762/bjoc.13.21
How to Cite
Ferro, M.; Castiglione, F.; Pastori, N.; Punta, C.; Melone, L.; Panzeri, W.; Rossi, B.; Trotta, F.; Mele, A. Beilstein J. Org. Chem. 2017, 13, 182–194. doi:10.3762/bjoc.13.21
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 936.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Evaluation of Spectroscopic Methods for Examining Structure and Dynamics of Nanosponges. International journal of molecular sciences 2025, 26, 9342. doi:10.3390/ijms26199342
- Yadav, R.; Patra, B.; Rai, R.; Sinha, N.; Singh, C. Solid-state NMR spectroscopy for unraveling structure and dynamics in biomaterials. Solid state nuclear magnetic resonance 2025, 140, 102045. doi:10.1016/j.ssnmr.2025.102045
- Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T.; Szeleszczuk, Ł. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics. International journal of molecular sciences 2024, 25, 3527. doi:10.3390/ijms25063527
- Lacalamita, D.; Bertini, S.; Mongioví, C.; Cosentino, C.; Morin-Crini, N.; Torri, G.; Fourmentin, M.; Naggi, A.; Fourmentin, S.; Guerrini, M.; Crini, G. Characterization of Cyclodextrin Cross-linked Polymers Used in Environmental Applications by Solid-state NMR Spectroscopy: a Historical Review. The Environment in a Magnet; Royal Society of Chemistry, 2024; pp 316–352. doi:10.1039/bk9781837671250-00316
- Singh, S.; Sharma, K.; Sharma, H. Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy. Pharmaceutical nanotechnology 2024, 12, 300–313. doi:10.2174/0122117385273293230927081513
- Gu, B.-X.; Wu, H.-H.; Sun, D.; Ji, Y.-L.; Gao, C.-J. Zwitterionic cyclodextrin membrane with uniform subnanometre pores for high-efficient heavy metal ions removal. Journal of Membrane Science 2023, 688, 122123. doi:10.1016/j.memsci.2023.122123
- Machado, T. F.; Utzeri, G.; Valente, A. J. M.; Serra, M. E. S.; Murtinho, D. Click nanosponge - A novel amine-rich β-cyclodextrin-based crosslinked polymer for heterogeneous catalysis. Carbohydrate polymers 2023, 326, 121612. doi:10.1016/j.carbpol.2023.121612
- Utzeri, G.; Murtinho, D.; Valente, A. J. M. Introduction to Cyclodextrin-Based Nanosponges. Nanosponges for Environmental Remediation; Springer Nature Switzerland, 2023; pp 87–115. doi:10.1007/978-3-031-41077-2_5
- Mazurek, A. H.; Szeleszczuk, Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems. International journal of molecular sciences 2023, 24, 3648. doi:10.3390/ijms24043648
- Gu, B.-X.; Wu, H.-H.; Sun, D.; Ji, Y.-L.; Gao, C. Zwitterionic Cyclodextrin Membrane with Uniform Subnanometre Pores for High-Efficient Heavy Metal Ions Removal. Elsevier BV 2023. doi:10.2139/ssrn.4535416
- Utzeri, G.; Matias, P. M. C.; Murtinho, D.; Valente, A. J. M. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Frontiers in chemistry 2022, 10, 859406. doi:10.3389/fchem.2022.859406
- Gackowski, M.; Paczwa, M. The Impact of Hydration and Dehydration on the Mobility and Location of Ibuprofen Molecules in the Voids of Ultra-Stable Zeolite Y. Materials (Basel, Switzerland) 2021, 14, 7823. doi:10.3390/ma14247823
- Gackowski, M.; Ruggiero-Mikołajczyk, M.; Duraczyńska, D.; Hinz, A.; Bzowska, M.; Szczepanowicz, K. The role of water in the confinement of ibuprofen in SBA-15. Journal of materials chemistry. B 2021, 9, 7482–7491. doi:10.1039/d1tb01498f
- Appleton, S. L.; Navarro-Orcajada, S.; Martínez-Navarro, F. J.; Caldera, F.; López-Nicolás, J. M.; Trotta, F.; Matencio, A. Cyclodextrins as Anti-inflammatory Agents: Basis, Drugs and Perspectives. Biomolecules 2021, 11, 1384. doi:10.3390/biom11091384
- Tannous, M.; Caldera, F.; Hoti, G.; Dianzani, U.; Cavalli, R.; Trotta, F. Drug-Encapsulated Cyclodextrin Nanosponges. Methods in molecular biology (Clifton, N.J.) 2020, 2207, 247–283. doi:10.1007/978-1-0716-0920-0_19
- Appleton, S. L.; Tannous, M.; Argenziano, M.; Muntoni, E.; Rosa, A. C.; Rossi, D.; Caldera, F.; Scomparin, A.; Trotta, F.; Cavalli, R. Nanosponges as protein delivery systems: Insulin, a case study. International journal of pharmaceutics 2020, 590, 119888–119898. doi:10.1016/j.ijpharm.2020.119888
- Krabicová, I.; Appleton, S. L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A. R.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122–1144. doi:10.3390/polym12051122
- Adeoye, O.; Bártolo, I.; Conceição, J.; Silva, A.; Duarte, N.; Francisco, A. P.; Taveira, N.; Cabral-Marques, H. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. International journal of pharmaceutics 2020, 583, 119356. doi:10.1016/j.ijpharm.2020.119356
- Rossi, B.; D'Amico, F.; Masciovecchio, C. Nanosponges; Wiley, 2019; pp 227–261. doi:10.1002/9783527341009.ch8
- Corsi, I.; Fiorati, A.; Grassi, G.; Bartolozzi, I.; Daddi, T.; Melone, L.; Punta, C. Environmentally Sustainable and Ecosafe Polysaccharide-Based Materials for Water Nano-Treatment: An Eco-Design Study. Materials (Basel, Switzerland) 2018, 11, 1228–1250. doi:10.3390/ma11071228