Supporting Information
| Supporting Information File 1: Reproductions of 1H and 13C NMR spectra for the reported compounds. | ||
| Format: PDF | Size: 1.3 MB | Download |
Cite the Following Article
A concise flow synthesis of indole-3-carboxylic ester and its derivatisation to an auxin mimic
Marcus Baumann, Ian R. Baxendale and Fabien Deplante
Beilstein J. Org. Chem. 2017, 13, 2549–2560.
https://doi.org/10.3762/bjoc.13.251
How to Cite
Baumann, M.; Baxendale, I. R.; Deplante, F. Beilstein J. Org. Chem. 2017, 13, 2549–2560. doi:10.3762/bjoc.13.251
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 175.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Sharma, P.; Mehara, P.; Kumar, A.; Das, P. Pd/C-Catalyzed Hydrocarboxylation and Carbonylative Esterification of Indoles to Indole-3-carboxylic Acids and Esters. Organic letters 2025, 27, 10974–10979. doi:10.1021/acs.orglett.5c03216
- Rajendran, S. H. A.; Kogler, S.; Kögl, P.; Braje, W. M.; Ötvös, S. B.; Kappe, C. O. Sustainable and Scalable Amidations in Water Using Continuous Slurry-Flow Technology. ACS Sustainable Chemistry & Engineering 2025, 13, 6423–6432. doi:10.1021/acssuschemeng.5c02289
- Hayes, H. L. D.; Mallia, C. J. Continuous Flow Chemistry with Solids: A Review. Organic Process Research & Development 2024, 28, 1327–1354. doi:10.1021/acs.oprd.3c00407
- Van Minnebruggen, S.; Marquez, C.; Krasniqi, B.; Janssens, K.; Van Velthoven, N.; Vercammen, J.; De Soete, B.; Bugaev, A.; De Vos, D. Oxidative carbonylation of N-protected indoles by Rh(III)-zeolites. Chemical communications (Cambridge, England) 2023, 59, 2319–2322. doi:10.1039/d2cc05953c
- Brandão, P.; Pineiro, M.; M.V.D. Pinho e Melo, T. doi:10.1002/9783527832002.ch11
- Zhou, F.; Wu, X.; Gao, Y.; Fan, S.; Zhou, H.; Zhang, X. Diversity Shifts in the Root Microbiome of Cucumber Under Different Plant Cultivation Substrates. Frontiers in microbiology 2022, 13, 878409. doi:10.3389/fmicb.2022.878409
- Mathada, B. S.; Yernale, N. G.; Basha, J. N.; Badiger, J. An insight into the advanced synthetic recipes to access ubiquitous indole heterocycles. Tetrahedron Letters 2021, 85, 153458. doi:10.1016/j.tetlet.2021.153458
- Yao, H.; Wan, L.; Zhao, X.; Guo, Y.; Zhou, J.; Bo, X.; Mao, Y.; Xin, Z. Effective Phosphorylation of 2,2′-Methylene-bis(4,6-di-tert-butyl) Phenol in Continuous Flow Reactors. Organic Process Research & Development 2021, 25, 2060–2070. doi:10.1021/acs.oprd.1c00105
- Gambacorta, G.; Sharley, J. S.; Baxendale, I. R. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein journal of organic chemistry 2021, 17, 1181–1312. doi:10.3762/bjoc.17.90
- Alfano, A. I.; Brindisi, M.; Lange, H. Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry 2021, 23, 2233–2292. doi:10.1039/d0gc03883k
- Ley, S. V.; Chen, Y.; Robinson, A.; Otter, B.; Godineau, E.; Battilocchio, C. A Comment on Continuous Flow Technologies within the Agrochemical Industry. Organic Process Research & Development 2021, 25, 713–720. doi:10.1021/acs.oprd.0c00534
- Jiao, J.; Nie, W.; Yu, T.; Yang, F.; Zhang, Q.; Aihemaiti, F.; Yang, T.; Liu, X.; Wang, J.; Li, P. Multi-Step Continuous-Flow Organic Synthesis: Opportunities and Challenges. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 4817–4838. doi:10.1002/chem.202004477
- Baumann, M.; Moody, T. S.; Smyth, M.; Wharry, S. Overcoming the Hurdles and Challenges Associated with Developing Continuous Industrial Processes. European Journal of Organic Chemistry 2020, 2020, 7398–7406. doi:10.1002/ejoc.202001278
- Di Filippo, M.; Baumann, M. Continuous Flow Synthesis of Quinolines via a Scalable Tandem Photoisomerization-Cyclization Process. European Journal of Organic Chemistry 2020, 2020, 6199–6211. doi:10.1002/ejoc.202000957
- Colella, M.; Degennaro, L.; Luisi, R. Continuous Flow Synthesis of Heterocycles: A Recent Update on the Flow Synthesis of Indoles. Molecules (Basel, Switzerland) 2020, 25, 3242. doi:10.3390/molecules25143242
- Brandão, P.; Pineiro, M.; Pinho e Melo, T. M. V. D. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry 2019, 2019, 7188–7217. doi:10.1002/ejoc.201901335
- Mortzfeld, F. B.; Pietruszka, J.; Baxendale, I. R. A simple and efficient flow preparation of pyocyanin a virulence factor of Pseudomonas aeruginosa. European Journal of Organic Chemistry 2019, 2019, 5424–5433. doi:10.1002/ejoc.201900526
- Litvinova, V. A.; Tikhomirov, A. S. Methods for the synthesis of indole-3-carboxylic acid esters (microreview). Chemistry of Heterocyclic Compounds 2018, 54, 923–925. doi:10.1007/s10593-018-2370-3
- Baumann, M. Integrating continuous flow synthesis with in-line analysis and data generation. Organic & biomolecular chemistry 2018, 16, 5946–5954. doi:10.1039/c8ob01437j