The reductive decyanation reaction: an overview and recent developments

Jean-Marc R. Mattalia
Beilstein J. Org. Chem. 2017, 13, 267–284. https://doi.org/10.3762/bjoc.13.30

Cite the Following Article

The reductive decyanation reaction: an overview and recent developments
Jean-Marc R. Mattalia
Beilstein J. Org. Chem. 2017, 13, 267–284. https://doi.org/10.3762/bjoc.13.30

How to Cite

Mattalia, J.-M. R. Beilstein J. Org. Chem. 2017, 13, 267–284. doi:10.3762/bjoc.13.30

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 112.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Smorodina, A. A.; Buev, E. M.; Moshkin, V. S.; Sosnovskikh, V. Y. Tunable Approach to Diverse Phenethylamines via Reduction of 5-Aryloxazolidines with Triethylsilane. The Journal of organic chemistry 2024, 89, 2294–2305. doi:10.1021/acs.joc.3c02264
  • Chao, F.; Yang, H.; Fang, Y. Photoredox‐catalyzed Decyanative Radical Cross‐coupling Reactions of Aromatic Nitriles. ChemCatChem 2024, 16. doi:10.1002/cctc.202301281
  • Wu, S.; Huang, J.; Kang, L.; Zhang, Y.; Yuan, K. Transition-Metal-Free, Reductive Csp2-Csp3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Organic letters 2024, 26, 763–768. doi:10.1021/acs.orglett.3c04307
  • Yu, Z.-C.; Shen, X.; Zhou, Y.; Chen, X.-L.; Wang, L.-S.; Wu, Y.-D.; Zhang, H.-K.; Zheng, K.-L.; Wu, A.-X. I2-promoted formal [3 + 1 + 1 + 1] cyclization to construct 5-cyano-1H-pyrazolo[3,4-b]pyridine using malononitrile as a C1 synthon. Organic Chemistry Frontiers 2023, 10, 5958–5964. doi:10.1039/d3qo01299a
  • Streuff, J. Reductive Umpolung and Defunctionalization Reactions through Higher-Order Titanium(III) Catalysis. Synlett 2022, 34, 314–326. doi:10.1055/s-0042-1751391
  • Paul, D.; Chatterjee, P. N. The Rise of Carbon‐based Leaving Groups. ChemistrySelect 2022, 7. doi:10.1002/slct.202200965
  • Surya Prakash Rao, H.; Prabakaran, M.; Muthanna, N. Synthesis of 7-hydroxydibenzopyran-6-ones via benzannulation of coumarins. Organic & biomolecular chemistry 2022, 20, 6905–6914. doi:10.1039/d2ob01203k
  • Mills, L. R.; Patel, P.; Rousseaux, S. A. L. Decyanation-(hetero)arylation of malononitriles to access α-(hetero)arylnitriles. Organic & biomolecular chemistry 2022, 20, 5933–5937. doi:10.1039/d2ob00236a
  • Xiong, Z.; Weidlich, F.; Sanchez, C.; Wirth, T. Biomimetic total synthesis of (-)-galanthamine via intramolecular anodic aryl-phenol coupling. Organic & biomolecular chemistry 2022, 20, 4123–4127. doi:10.1039/d2ob00669c
  • Wohlgemuth, R. Selective Biocatalytic Defunctionalization of Raw Materials. ChemSusChem 2022, 15, e202200402. doi:10.1002/cssc.202200402
  • Bhunia, S.; Das, D. Carbon-based nucleophiles as leaving groups in organic synthesis via cleavage of C–C sigma bonds. Tetrahedron 2022, 112, 132738. doi:10.1016/j.tet.2022.132738
  • Ano, Y.; Higashino, M.; Yamada, Y.; Chatani, N. Palladium-catalyzed synthesis of nitriles from N-phthaloyl hydrazones. Chemical communications (Cambridge, England) 2022, 58, 3799–3802. doi:10.1039/d2cc00342b
  • Paul, N.; Patra, T.; Maiti, D. Recent Developments in Hydrodecyanation and Decyanative Functionalization Reactions. Asian Journal of Organic Chemistry 2021, 11. doi:10.1002/ajoc.202100591
  • Guo, W.; Cai, L.; Xie, Z.; Mei, W.; Liu, G.; Deng, L.; Zhuo, X.; Zhong, Y.; Zou, X.; Zheng, L.; Fan, X. Photocatalyzed intermolecular amination for the synthesis of hydrazonamides. Organic Chemistry Frontiers 2021, 8, 3838–3846. doi:10.1039/d1qo00338k
  • Mills, L. R.; Edjoc, R. K.; Rousseaux, S. A. L. Design of an Electron-Withdrawing Benzonitrile Ligand for Ni-Catalyzed Cross-Coupling Involving Tertiary Nucleophiles. Journal of the American Chemical Society 2021, 143, 10422–10428. doi:10.1021/jacs.1c05281
  • Midya, S. P.; Subaramanian, M.; Babu, R.; Yadav, V.; Balaraman, E. Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis. The Journal of organic chemistry 2021, 86, 7552–7562. doi:10.1021/acs.joc.1c00592
  • Huang, B.; Guo, L.; Xia, W. A facile and versatile electro-reductive system for hydrodefunctionalization under ambient conditions. Green Chemistry 2021, 23, 2095–2103. doi:10.1039/d1gc00317h
  • Wu, K.; Ling, Y.; Sun, N.; Hu, B.; Shen, Z.; Jin, L.; Hu, X. Ni-catalyzed reductive decyanation of nitriles with ethanol as the reductant. Chemical communications (Cambridge, England) 2021, 57, 2273–2276. doi:10.1039/d0cc07743g
  • Reddy, G. S.; Reddy, D. S.; Corey, E. J. Unraveling the C2-Symmetric Azatetraquinane System. Simple, Enantioselective Syntheses. Organic letters 2021, 23, 2258–2262. doi:10.1021/acs.orglett.1c00387
  • Xuan, J.; Haelsig, K. T.; Sheremet, M.; Machicao, P. A.; Maimone, T. J. Evolution of a Synthetic Strategy for Complex Polypyrrole Alkaloids: Total Syntheses of Curvulamine and Curindolizine. Journal of the American Chemical Society 2021, 143, 2970–2983. doi:10.1021/jacs.0c13465
Other Beilstein-Institut Open Science Activities