Cite the Following Article
The reductive decyanation reaction: an overview and recent developments
Jean-Marc R. Mattalia
Beilstein J. Org. Chem. 2017, 13, 267–284.
https://doi.org/10.3762/bjoc.13.30
How to Cite
Mattalia, J.-M. R. Beilstein J. Org. Chem. 2017, 13, 267–284. doi:10.3762/bjoc.13.30
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 112.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yoshida, Y.; Okada, W.; Takada, K.; Nakamura, S.; Yasukawa, N. Photocatalytic Decyanative Radical Addition Based on Cyano Group Transfer Mediated by Amine-Ligated Boryl Radicals. Organic letters 2025, 27, 7236–7241. doi:10.1021/acs.orglett.5c02217
- Yamazaki, K.; Akimoto, S.; Miura, T. Harnessing the reactivity of captodative radicals: photocatalytic α-pyridination of glycyl derivatives through reversible radical coupling. Organic & biomolecular chemistry 2025. doi:10.1039/d5ob00675a
- Yoshida, Y.; Okada, W.; Takada, K.; Nakamura, S.; Yasukawa, N. Photocatalytic Strategy for Decyanative Transformations Enabled by Amine-Ligated Boryl Radical. Organic letters 2025, 27, 2542–2547. doi:10.1021/acs.orglett.4c04701
- Narobe, R.; Perner, M. N.; Gálvez-Vázquez, M. d. J.; Kuhwald, C.; Klein, M.; Broekmann, P.; Rösler, S.; Cezanne, B.; Waldvogel, S. R. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. Green chemistry : an international journal and green chemistry resource : GC 2024, 26, 10567–10574. doi:10.1039/d4gc03446e
- Suresh, M.; Singh, R. B.; Katlakunta, S.; Patra, S. R.; Tanwer, Y. B. S.; Mallick, S.; Bhunia, S.; Das, D. Starch-supported cuprous iodide nanoparticles catalysed C–C bond cleavage: use of carbon-based leaving groups for bisindolylmethane synthesis. Monatshefte für Chemie - Chemical Monthly 2024, 155, 739–745. doi:10.1007/s00706-024-03215-2
- Smorodina, A. A.; Buev, E. M.; Moshkin, V. S.; Sosnovskikh, V. Y. Tunable Approach to Diverse Phenethylamines via Reduction of 5-Aryloxazolidines with Triethylsilane. The Journal of organic chemistry 2024, 89, 2294–2305. doi:10.1021/acs.joc.3c02264
- Chao, F.; Yang, H.; Fang, Y. Photoredox‐catalyzed Decyanative Radical Cross‐coupling Reactions of Aromatic Nitriles. ChemCatChem 2024, 16. doi:10.1002/cctc.202301281
- Wu, S.; Huang, J.; Kang, L.; Zhang, Y.; Yuan, K. Transition-Metal-Free, Reductive Csp2-Csp3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Organic letters 2024, 26, 763–768. doi:10.1021/acs.orglett.3c04307
- Yu, Z.-C.; Shen, X.; Zhou, Y.; Chen, X.-L.; Wang, L.-S.; Wu, Y.-D.; Zhang, H.-K.; Zheng, K.-L.; Wu, A.-X. I2-promoted formal [3 + 1 + 1 + 1] cyclization to construct 5-cyano-1H-pyrazolo[3,4-b]pyridine using malononitrile as a C1 synthon. Organic Chemistry Frontiers 2023, 10, 5958–5964. doi:10.1039/d3qo01299a
- Streuff, J. Reductive Umpolung and Defunctionalization Reactions through Higher-Order Titanium(III) Catalysis. Synlett 2022, 34, 314–326. doi:10.1055/s-0042-1751391
- Paul, D.; Chatterjee, P. N. The Rise of Carbon‐based Leaving Groups. ChemistrySelect 2022, 7. doi:10.1002/slct.202200965
- Surya Prakash Rao, H.; Prabakaran, M.; Muthanna, N. Synthesis of 7-hydroxydibenzopyran-6-ones via benzannulation of coumarins. Organic & biomolecular chemistry 2022, 20, 6905–6914. doi:10.1039/d2ob01203k
- Mills, L. R.; Patel, P.; Rousseaux, S. A. L. Decyanation-(hetero)arylation of malononitriles to access α-(hetero)arylnitriles. Organic & biomolecular chemistry 2022, 20, 5933–5937. doi:10.1039/d2ob00236a
- Xiong, Z.; Weidlich, F.; Sanchez, C.; Wirth, T. Biomimetic total synthesis of (-)-galanthamine via intramolecular anodic aryl-phenol coupling. Organic & biomolecular chemistry 2022, 20, 4123–4127. doi:10.1039/d2ob00669c
- Wohlgemuth, R. Selective Biocatalytic Defunctionalization of Raw Materials. ChemSusChem 2022, 15, e202200402. doi:10.1002/cssc.202200402
- Bhunia, S.; Das, D. Carbon-based nucleophiles as leaving groups in organic synthesis via cleavage of C–C sigma bonds. Tetrahedron 2022, 112, 132738. doi:10.1016/j.tet.2022.132738
- Ano, Y.; Higashino, M.; Yamada, Y.; Chatani, N. Palladium-catalyzed synthesis of nitriles from N-phthaloyl hydrazones. Chemical communications (Cambridge, England) 2022, 58, 3799–3802. doi:10.1039/d2cc00342b
- Paul, N.; Patra, T.; Maiti, D. Recent Developments in Hydrodecyanation and Decyanative Functionalization Reactions. Asian Journal of Organic Chemistry 2021, 11. doi:10.1002/ajoc.202100591
- Guo, W.; Cai, L.; Xie, Z.; Mei, W.; Liu, G.; Deng, L.; Zhuo, X.; Zhong, Y.; Zou, X.; Zheng, L.; Fan, X. Photocatalyzed intermolecular amination for the synthesis of hydrazonamides. Organic Chemistry Frontiers 2021, 8, 3838–3846. doi:10.1039/d1qo00338k
- Mills, L. R.; Edjoc, R. K.; Rousseaux, S. A. L. Design of an Electron-Withdrawing Benzonitrile Ligand for Ni-Catalyzed Cross-Coupling Involving Tertiary Nucleophiles. Journal of the American Chemical Society 2021, 143, 10422–10428. doi:10.1021/jacs.1c05281