Cite the Following Article
Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes
Carmen Moreno-Marrodan, Francesca Liguori and Pierluigi Barbaro
Beilstein J. Org. Chem. 2017, 13, 734–754.
https://doi.org/10.3762/bjoc.13.73
How to Cite
Moreno-Marrodan, C.; Liguori, F.; Barbaro, P. Beilstein J. Org. Chem. 2017, 13, 734–754. doi:10.3762/bjoc.13.73
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 269.9 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Perxés Perich, M.; Helfferich, K. H.; de Jongh, P. E.; van der Hoeven, J. E. S. Au-Pd core-shell nanoparticles for enhanced catalytic performance in liquid-phase selective hydrogenation. Catalysis science & technology 2025. doi:10.1039/d5cy00889a
- Zhang, Z.; Baek, H.; Soliman, E.; Ohno, A.; Yamada, Y. M. A. Durable Etched Silicon Powder‐Supported Palladium Catalyst for Continuous Flow Hydrogenation and Reductive Alkylation. Chemistry–Methods 2025. doi:10.1002/cmtd.202500050
- Zhang, Y.; Zhao, X.; Qing, G. Electrochemical-induced hydrofunctionalizations of alkenes and alkynes. Chemical Synthesis 2024, 4. doi:10.20517/cs.2023.38
- Zawadzki, B.; Fernández Ropero, A. J.; Abid, R.; Matus, K.; Krawczyk, M.; Patkowski, W.; Raróg – Pilecka, W.; Lisovystkiy, D.; Śrębowata, A. Mesoporous carbon supported Cu as the efficient catalyst for flow hydrogenation processes toward formation of products with pharmaceutical potential. Microporous and Mesoporous Materials 2023, 362, 112803. doi:10.1016/j.micromeso.2023.112803
- Li, B.; Cheng, Z.; Zhang, X.; Feng, F.; Xu, X.; Lu, C.; Zhang, Q.; Wang, Q.; Li, X. Synthesis of 2-Methylbenzimidazole in Continuous Flow: Mechanism of Cu–Pd/(K)γ-Al2O3-Catalyzed Deactivation and Regeneration. Industrial & Engineering Chemistry Research 2023, 62, 17473–17482. doi:10.1021/acs.iecr.3c01920
- Gupta, A.; Gupta, R.; Arora, G.; Yadav, P.; Sharma, R. K. Heterogeneous Catalysis under Continuous Flow Conditions. Current Organic Chemistry 2023, 27, 1090–1110. doi:10.2174/0113852728268688230921105908
- Swamy, A.; Kanakikodi, K. S.; Bakuru, V. R.; Kulkarni, B. B.; Maradur, S. P.; Kalidindi, S. B. Continuous Flow Liquid‐Phase Semihydrogenation of Phenylacetylene over Pd Nanoparticles Supported on UiO‐66(Hf) Metal‐Organic Framework. ChemistrySelect 2023, 8. doi:10.1002/slct.202203926
- Si, Y.; Liu, S.; Ming, W.; Wei, W.; Ji, L.; Zhang, J.; An, T.; Gong, D.; Zhao, J.; Meng, Q.; Yan, D. Micropacked‐bed Reactor for Continuous Hydrogenation of Aromatic Dinitro Compounds. ChemistrySelect 2022, 7. doi:10.1002/slct.202203577
- Wu, J.; Chen, J.; Cui, J.; Yang, Z.; Zhang, J. Triazole-based covalent gels assembled from small molecules with superior stability for supported catalysis in a monolithic microfluidic reactor. Applied Catalysis A: General 2022, 646, 118851. doi:10.1016/j.apcata.2022.118851
- Asano, S.; Adams, S. J.; Tsuji, Y.; Yoshizawa, K.; Tahara, A.; Hayashi, J.-i.; Cherkasov, N. Homogeneous catalyst modifier for alkyne semi-hydrogenation: systematic screening in an automated flow reactor and computational study on mechanisms. Reaction Chemistry & Engineering 2022, 7, 1818–1826. doi:10.1039/d2re00147k
- Masson, E.; Maciejewski, E. M.; Wheelhouse, K. M. P.; Edwards, L. J. Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Organic Process Research & Development 2022, 26, 2190–2223. doi:10.1021/acs.oprd.2c00034
- Denisova, E. A.; Kostyukovich, A. Y.; Fakhrutdinov, A. N.; Korabelnikova, V. A.; Galushko, A. S.; Ananikov, V. P. "Hidden" Nanoscale Catalysis in Alkyne Hydrogenation with Well-Defined Molecular Pd/NHC Complexes. ACS Catalysis 2022, 12, 6980–6996. doi:10.1021/acscatal.2c01749
- Xu, X.; Zhang, M.; Jiang, P.; Liu, D.; Wang, Y.; Xu, X.; Ji, Z.; Jia, X.; Wang, H.; Wang, X. Direct ink writing of Pd-Decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceramics International 2022, 48, 10843–10851. doi:10.1016/j.ceramint.2021.12.301
- Xu, Y.; Gao, C.; Andreasson, M.; Håversen, L.; Carrasco, M. P.; Fleming, C.; Lundbäck, T.; Andréasson, J.; Grøtli, M. Design and development of photoswitchable DFG-Out RET kinase inhibitors. European journal of medicinal chemistry 2022, 234, 114226. doi:10.1016/j.ejmech.2022.114226
- Oberhauser, W.; Frediani, M.; Mohammadi Dehcheshmeh, I.; Evangelisti, C.; Poggini, L.; Capozzoli, L.; Najafi Moghadam, P. Selective Alkyne Semi‐Hydrogenation by PdCu Nanoparticles Immobilized on Stereocomplexed Poly(lactic acid). ChemCatChem 2022, 14. doi:10.1002/cctc.202101910
- Brandi, F.; Al-Naji, M. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System. ChemSusChem 2022, 15, e202102525. doi:10.1002/cssc.202102525
- Mironenko, R. M.; Likholobov, V. A.; Belskaya, O. B. Nanoglobular carbon and palladium catalysts based on it for liquid-phase hydrogenation of organic compounds. Russian Chemical Reviews 2022, 91, RCR5017. doi:10.1070/rcr5017
- Fernández-Ropero, A. J.; Zawadzki, B.; Matus, K.; Patkowski, W.; Krawczyk, M.; Lisovytskiy, D.; Raróg-Pilecka, W.; Śrębowata, A. Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts 2021, 12, 19. doi:10.3390/catal12010019
- Chen, X.; Shi, C.; Wang, X.-B.; Li, W.-Y.; Liang, C. Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Communications chemistry 2021, 4, 175. doi:10.1038/s42004-021-00612-0
- Salique, F.; Musina, A.; Winter, M.; Yann, N.; Roth, P. M. C. Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution. Frontiers in Chemical Engineering 2021, 3. doi:10.3389/fceng.2021.701910