Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic

Chinmay A. Shukla and Amol A. Kulkarni
Beilstein J. Org. Chem. 2017, 13, 960–987. https://doi.org/10.3762/bjoc.13.97

Cite the Following Article

Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic
Chinmay A. Shukla and Amol A. Kulkarni
Beilstein J. Org. Chem. 2017, 13, 960–987. https://doi.org/10.3762/bjoc.13.97

How to Cite

Shukla, C. A.; Kulkarni, A. A. Beilstein J. Org. Chem. 2017, 13, 960–987. doi:10.3762/bjoc.13.97

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 325.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yu, L.; Chen, B.; Li, Z.; Su, Y.; Jiang, X.; Han, Z.; Zhou, Y.; Yan, D.; Zhu, X.; Dong, R. Computer-aided automated flow chemical synthesis of polymers. Giant 2024, 100252. doi:10.1016/j.giant.2024.100252
  • Labes, R.; Pastre, J. C.; Ingham, R. J.; Battilocchio, C.; Marçon, H. M.; Damião, M. C. F. C. B.; Tran, D. N.; Ley, S. V. Automated multistep synthesis of 2-pyrazolines in continuous flow. Reaction Chemistry & Engineering 2024, 9, 558–565. doi:10.1039/d3re00515a
  • Fuse, S.; Kanda, S.; Masui, H. One-Flow Synthesis of Substituted Indoles via Sequential 1,2-Addition/Nucleophilic Substitution of Indolyl-3-Carbaldehydes. Chemistry, an Asian journal 2023, 19, e202300909. doi:10.1002/asia.202300909
  • Wu, J.; Yang, X.; Pan, Y.; Zuo, T.; Ning, Z.; Li, C.; Zhang, Z. Recent developments of automated flow chemistry in pharmaceutical compounds synthesis. Journal of Flow Chemistry 2023, 13, 385–404. doi:10.1007/s41981-023-00285-x
  • Wang, G.; Ang, H. T.; Dubbaka, S. R.; O'Neill, P.; Wu, J. Multistep automated synthesis of pharmaceuticals. Trends in Chemistry 2023, 5, 432–445. doi:10.1016/j.trechm.2023.03.008
  • Wang, Y.; Shen, C.; Qiu, M.; Shang, M.; Su, Y. Kinetic study in an automatic continuous‐flow photochemical platform with machine learning. AIChE Journal 2023, 69. doi:10.1002/aic.18102
  • Ren, J.; Wu, M.; Dong, K.; Zhang, M.; Cheng, Y.; Shi, G. Highly efficient synthesis and application of aryl diazonium salts via femtosecond laser-tailored 3D flow microfluidic chips. Chinese Chemical Letters 2023, 34, 107694. doi:10.1016/j.cclet.2022.07.037
  • García-Lacuna, J.; Baumann, M. Inline purification in continuous flow synthesis – opportunities and challenges. Beilstein Journal of Organic Chemistry 2022, 18, 1720–1740. doi:10.3762/bjoc.18.182
  • Skaria, M.; Culpepper, J. D.; Daly, S. R. Leveraging Metal and Ligand Reactive Sites for One Pot Reactions: Ligand-Centered Borenium Ions for Tandem Catalysis with Palladium. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201791. doi:10.1002/chem.202201791
  • Van Herck, J.; Abeysekera, I.; Buckinx, A.-L.; Cai, K.; Hooker, J.; Thakur, K.; Van de Reydt, E.; Voorter, P.-J.; Wyers, D.; Junkers, T. Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC. Digital Discovery 2022, 1, 519–526. doi:10.1039/d2dd00035k
  • Gioiello, A.; Moroni, G.; Cerra, B. doi:10.1002/9783527824595.ch5
  • Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research & Development 2022, 26, 1766–1793. doi:10.1021/acs.oprd.2c00102
  • Masui, H.; Fuse, S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Organic Process Research & Development 2022, 26, 1751–1765. doi:10.1021/acs.oprd.2c00074
  • Kitamura, H.; Otake, Y.; Sugisawa, N.; Sugisawa, H.; Ida, T.; Nakamura, H.; Fuse, S. Sequential Nucleophilic Substitution of Phosphorus Trichloride with Alcohols in a Continuous-Flow Reactor and Consideration of a Mechanism for Reduced Over-reaction through the Addition of Imidazole. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202200932. doi:10.1002/chem.202200932
  • Okabe, R.; Sugisawa, N.; Fuse, S. A micro-flow rapid dual activation approach for urethane-protected α-amino acid N-carboxyanhydride synthesis. Organic & biomolecular chemistry 2022, 20, 3303–3310. doi:10.1039/d2ob00167e
  • Azeredo, J. B.; Penteado, F.; Nascimento, V.; Sancineto, L.; Braga, A. L.; Lenardao, E. J.; Santi, C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules (Basel, Switzerland) 2022, 27, 1597. doi:10.3390/molecules27051597
  • Sharma, B. M.; Nikam, A. V.; Lahore, S.; Ahn, G.-N.; Kim, D.-P. Cyanide-Free Cyanation of sp2 and sp-Carbon Atoms by an Oxazole-Based Masked CN Source Using Flow Microreactors. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202103777. doi:10.1002/chem.202103777
  • Beckers, O.; Smeets, S.; Lutsen, L.; Maes, W. Perspective on the application of continuous flow chemistry for polymer-based organic electronics. Journal of Materials Chemistry C 2022, 10, 1606–1616. doi:10.1039/d1tc04635g
  • Jiang, R.; Xue, X.; Zhao, F.; Zhu, W.; Shang, M.; Su, Y.; Xu, Y.; Qian, X. Process parameter and kinetic study for the azidation of a zidovudine intermediate with sodium azide in microreactors. Chemical Engineering Journal 2022, 429, 132207. doi:10.1016/j.cej.2021.132207
  • Cosgrove, S. C.; Mattey, A. P. Reaching New Biocatalytic Reactivity Using Continuous Flow Reactors. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202103607. doi:10.1002/chem.202103607
Other Beilstein-Institut Open Science Activities