Oligonucleotide analogues with cationic backbone linkages

Melissa Meng and Christian Ducho
Beilstein J. Org. Chem. 2018, 14, 1293–1308. https://doi.org/10.3762/bjoc.14.111

Cite the Following Article

Oligonucleotide analogues with cationic backbone linkages
Melissa Meng and Christian Ducho
Beilstein J. Org. Chem. 2018, 14, 1293–1308. https://doi.org/10.3762/bjoc.14.111

How to Cite

Meng, M.; Ducho, C. Beilstein J. Org. Chem. 2018, 14, 1293–1308. doi:10.3762/bjoc.14.111

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 123.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yamaguchi, T.; Horie, N.; Aoyama, H.; Kumagai, S.; Obika, S. Mechanism of the extremely high duplex-forming ability of oligonucleotides modified with N-tert-butylguanidine- or N-tert-butyl-N'- methylguanidine-bridged nucleic acids. Nucleic acids research 2023, 51, 7749–7761. doi:10.1093/nar/gkad608
  • Patrushev, D. E.; Burakova, E. A.; Bizyaev, S. N.; Fokina, A. A.; Stetsenko, D. A. New Zwitter-Ionic Oligonucleotides: Preparation and Complementary Binding. Molecular Biology 2023, 57, 320–328. doi:10.1134/s0026893323020164
  • Bremer, J.; Richter, C.; Schwalbe, H.; Richert, C. Synthesis of a Peptidoyl RNA Hairpin via a Combination of Solid-Phase and Template-Directed Chain Assembly. Chembiochem : a European journal of chemical biology 2022, 23, e202200352. doi:10.1002/cbic.202200352
  • Bege, M.; Borbás, A. The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals (Basel, Switzerland) 2022, 15, 909. doi:10.3390/ph15080909
  • De Fazio, A. F.; Misatziou, D.; Baker, Y. R.; Muskens, O. L.; Brown, T.; Kanaras, A. G. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chemical Society reviews 2021, 50, 13410–13440. doi:10.1039/d1cs00632k
  • Debreczeni, N.; Bege, M.; Herczeg, M.; Bereczki, I.; Batta, G.; Herczegh, P.; Borbás, A. Tightly linked morpholino-nucleoside chimeras: new, compact cationic oligonucleotide analogues. Organic & biomolecular chemistry 2021, 19, 8711–8721. doi:10.1039/d1ob01174j
  • Danielsen, M. B.; Wengel, J. Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein journal of organic chemistry 2021, 17, 1828–1848. doi:10.3762/bjoc.17.125
  • Clavé, G.; Reverte, M.; Vasseur, J.-J.; Smietana, M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC chemical biology 2021, 2, 94–150. doi:10.1039/d0cb00136h
  • Hawner, M.; Ducho, C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules (Basel, Switzerland) 2020, 25, 5963. doi:10.3390/molecules25245963
  • Kumagai, S.; Sawamoto, H.; Takegawa-Araki, T.; Arai, Y.; Yamakoshi, S.; Yamada, K.; Ohta, T.; Kawanishi, E.; Horie, N.; Yamaguchi, T.; Obika, S. Synthesis and properties of GuNA purine/pyrimidine nucleosides and oligonucleotides. Organic & biomolecular chemistry 2020, 18, 9461–9472. doi:10.1039/d0ob01970d
  • Patutina, O. A.; Gaponova, S.; Sen'kova, A. V.; Savin, I. A.; Gladkikh, D. V.; Burakova, E. A.; Fokina, A. A.; Maslov, M. A.; Shmendel, E. V.; Wood, M. J. A.; Vlassov, V. V.; Altman, S.; Stetsenko, D. A.; Zenkova, M. A. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 32370–32379. doi:10.1073/pnas.2016158117
  • Wnuk, M.; Slipek, P.; Dziedzic, M.; Lewinska, A. The Roles of Host 5-Methylcytosine RNA Methyltransferases during Viral Infections. International journal of molecular sciences 2020, 21, 8176. doi:10.3390/ijms21218176
  • Wojtyniak, M.; Schmidtgall, B.; Kirsch, P.; Ducho, C. Towards Zwitterionic Oligonucleotides with Improved Properties: the NAA/LNA-Gapmer Approach. Chembiochem : a European journal of chemical biology 2020, 21, 3234–3243. doi:10.1002/cbic.202000450
  • Skakuj, K.; Bujold, K. E.; Mirkin, C. A. Automated Synthesis and Purification of Guanidine-Backbone Oligonucleotides. Current protocols in nucleic acid chemistry 2020, 81, e110. doi:10.1002/cpnc.110
  • Skakuj, K.; Bujold, K. E.; Mirkin, C. A. Mercury-Free Automated Synthesis of Guanidinium Backbone Oligonucleotides. Journal of the American Chemical Society 2019, 141, 20171–20176. doi:10.1021/jacs.9b09937
  • Jahanban-Esfahlan, A.; Seidi, K.; Jaymand, M.; Schmidt, T.; Majdi, H.; Javaheri, T.; Jahanban-Esfahlan, R.; Zare, P. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. Journal of controlled release : official journal of the Controlled Release Society 2019, 315, 166–185. doi:10.1016/j.jconrel.2019.10.003
  • Soler-Bistué, A.; Zorreguieta, A.; Tolmasky, M. E. Bridged Nucleic Acids Reloaded. Molecules (Basel, Switzerland) 2019, 24, 2297. doi:10.3390/molecules24122297
  • Arangundy-Franklin, S.; Taylor, A. I.; Porebski, B. T.; Genna, V.; Peak-Chew, S. Y.; Vaisman, A.; Woodgate, R.; Orozco, M.; Holliger, P. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nature chemistry 2019, 11, 533–542. doi:10.1038/s41557-019-0255-4
  • Meng, M.; Schmidtgall, B.; Ducho, C. Enhanced Stability of DNA Oligonucleotides with Partially Zwitterionic Backbone Structures in Biological Media. Molecules (Basel, Switzerland) 2018, 23, 2941. doi:10.3390/molecules23112941


Other Beilstein-Institut Open Science Activities