Steric “attraction”: not by dispersion alone

Ganna Gryn’ova and Clémence Corminboeuf
Beilstein J. Org. Chem. 2018, 14, 1482–1490. https://doi.org/10.3762/bjoc.14.125

Supporting Information

Supporting Information File 1: Additional figures, complete set of computed data and geometries of the studied monomers and dimers.
Format: PDF Size: 3.5 MB Download

Cite the Following Article

Steric “attraction”: not by dispersion alone
Ganna Gryn’ova and Clémence Corminboeuf
Beilstein J. Org. Chem. 2018, 14, 1482–1490. https://doi.org/10.3762/bjoc.14.125

How to Cite

Gryn’ova, G.; Corminboeuf, C. Beilstein J. Org. Chem. 2018, 14, 1482–1490. doi:10.3762/bjoc.14.125

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 869.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rummel, L.; Schreiner, P. R. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angewandte Chemie 2024. doi:10.1002/ange.202316364
  • Rummel, L.; Schreiner, P. R. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angewandte Chemie (International ed. in English) 2023, e202316364. doi:10.1002/anie.202316364
  • Li, J.; Peng, X.; Yin, S.; Wang, C.; Mo, Y. On the metastability of π-π stacking between closed-shell ions of like charges. Chinese Journal of Structural Chemistry 2023, 100213. doi:10.1016/j.cjsc.2023.100213
  • Groslambert, L.; Cornaton, Y.; Ditte, M.; Aubert, E.; Pale, P.; Tkatchenko, A.; Djukic, J.-P.; Mamane, V. Affinity of Telluronium Chalcogen Bond Donors for Lewis Bases in Solution: A Critical Experimental-Theoretical Joint Study. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, e202302933. doi:10.1002/chem.202302933
  • Carter-Fenk, K.; Liu, M.; Pujal, L.; Loipersberger, M.; Tsanai, M.; Vernon, R. M.; Forman-Kay, J. D.; Head-Gordon, M.; Heidar-Zadeh, F.; Head-Gordon, T. The Energetic Origins of Pi-Pi Contacts in Proteins. Journal of the American Chemical Society 2023. doi:10.1021/jacs.3c09198
  • Sechi, B.; Dessì, A.; Dallocchio, R.; Tsetskhladze, N.; Chankvetadze, B.; Pérez-Baeza, M.; Cossu, S.; Jibuti, G.; Mamane, V.; Peluso, P. Unravelling dispersion forces in liquid-phase enantioseparation. Part I: Impact of ferrocenyl versus phenyl groups. Analytica chimica acta 2023, 1278, 341725. doi:10.1016/j.aca.2023.341725
  • Fokin, A. A. Long but Strong C-C Single Bonds: Challenges for Theory. Chemical record (New York, N.Y.) 2023, e202300170. doi:10.1002/tcr.202300170
  • Petrushenko, I.; Petrushenko, K. A nanoboat molecule as a promising adsorbent for molecular trapping: Theoretical insights. Physica E: Low-dimensional Systems and Nanostructures 2023, 148, 115632. doi:10.1016/j.physe.2022.115632
  • Mráziková, K.; Kruse, H.; Mlýnský, V.; Auffinger, P.; Šponer, J. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions. Journal of chemical information and modeling 2022, 62, 6182–6200. doi:10.1021/acs.jcim.2c01064
  • Cabaleiro-Lago, E. M.; Rodríguez-Otero, J.; Vázquez, S. A. Electrostatic penetration effects stand at the heart of aromatic π interactions. Physical chemistry chemical physics : PCCP 2022, 24, 8979–8991. doi:10.1039/d2cp00714b
  • Petrushenko, I. K.; Ivanov, N. A.; Petrushenko, K. B. Theoretical Investigation of Carbon Dioxide Adsorption on Li+-Decorated Nanoflakes. Molecules (Basel, Switzerland) 2021, 26, 7688. doi:10.3390/molecules26247688
  • Mráziková, K.; Šponer, J.; Mlýnský, V.; Auffinger, P.; Kruse, H. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids. Journal of chemical information and modeling 2021, 61, 5644–5657. doi:10.1021/acs.jcim.1c01047
  • Petrushenko, I. K.; Tikhonov, N.; Petrushenko, K. Hydrogen adsorption on pillar[6]arene: A computational study. Physica E: Low-dimensional Systems and Nanostructures 2021, 130, 114719. doi:10.1016/j.physe.2021.114719
  • Morgante, P.; Peverati, R. CLB18: A New Structural Database with Unusual Carbon–Carbon Long Bonds. Chemical Physics Letters 2021, 765, 138281. doi:10.1016/j.cplett.2020.138281
  • Herbert, J. M.; Carter-Fenk, K. Electrostatics, Charge Transfer, and the Nature of the Halide-Water Hydrogen Bond. The journal of physical chemistry. A 2021, 125, 1243–1256. doi:10.1021/acs.jpca.0c11356
  • Maier, S.; Donahue, J. P.; Jacobsen, H. Surprises with coordination geometries of cationic copper(I) complexes. Polyhedron 2021, 194, 114941. doi:10.1016/j.poly.2020.114941
  • Karton, A. Catalysis on Pristine 2D Materials via Dispersion and Electrostatic Interactions. The journal of physical chemistry. A 2020, 124, 6977–6985. doi:10.1021/acs.jpca.0c05386
  • Petrushenko, I.; Tikhonov, N.; Petrushenko, K. Graphene-BN-organic nanoflake complexes: DFT, IGM and SAPT0 insights. Diamond and Related Materials 2020, 107, 107905. doi:10.1016/j.diamond.2020.107905
  • Kruse, H.; Mráziková, K.; D'Ascenzo, L.; Sponer, J.; Auffinger, P. Short but Weak: The Z-DNA Lone-Pair⋅⋅⋅π Conundrum Challenges Standard Carbon Van der Waals Radii. Angewandte Chemie (International ed. in English) 2020, 59, 16553–16560. doi:10.1002/anie.202004201
  • Kruse, H.; Mrazikova, K.; D'Ascenzo, L.; Sponer, J.; Auffinger, P. Short but Weak: The Z‐DNA Lone‐Pair⋅⋅⋅π Conundrum Challenges Standard Carbon Van der Waals Radii. Angewandte Chemie 2020, 132, 16696–16703. doi:10.1002/ange.202004201
Other Beilstein-Institut Open Science Activities