Cobalt-catalyzed C–H cyanations: Insights into the reaction mechanism and the role of London dispersion

Eric Detmar, Valentin Müller, Daniel Zell, Lutz Ackermann and Martin Breugst
Beilstein J. Org. Chem. 2018, 14, 1537–1545. https://doi.org/10.3762/bjoc.14.130

Supporting Information

Supporting Information File 1: Cartesian coordinates, energies of all calculated structures, and details of computational methods.
Format: PDF Size: 2.5 MB Download

Cite the Following Article

Cobalt-catalyzed C–H cyanations: Insights into the reaction mechanism and the role of London dispersion
Eric Detmar, Valentin Müller, Daniel Zell, Lutz Ackermann and Martin Breugst
Beilstein J. Org. Chem. 2018, 14, 1537–1545. https://doi.org/10.3762/bjoc.14.130

How to Cite

Detmar, E.; Müller, V.; Zell, D.; Ackermann, L.; Breugst, M. Beilstein J. Org. Chem. 2018, 14, 1537–1545. doi:10.3762/bjoc.14.130

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 196.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rummel, L.; Schreiner, P. R. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angewandte Chemie 2024. doi:10.1002/ange.202316364
  • Rummel, L.; Schreiner, P. R. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angewandte Chemie (International ed. in English) 2023, e202316364. doi:10.1002/anie.202316364
  • de Carvalho, R. L.; Diogo, E. B. T.; Homölle, S. L.; Dana, S.; da Silva Júnior, E. N.; Ackermann, L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chemical Society reviews 2023, 52, 6359–6378. doi:10.1039/d3cs00328k
  • Yuan, B.; Oliveira, J. C. A.; Ackermann, L. Understanding and Describing London Dispersion Effects in ­Transition-Metal-Catalyzed C–H Activations. Synlett 2023, 34, 1098–1112. doi:10.1055/a-2060-3288
  • Rösel, S.; Schreiner, P. R. Computational Chemistry as a Conceptual Game Changer: Understanding the Role of London Dispersion in Hexaphenylethane Derivatives (Gomberg Systems). Israel Journal of Chemistry 2022, 62. doi:10.1002/ijch.202200002
  • Gonzalez-Gomez, J. C.; Alonso, F. Organic Reaction Mechanisms Series; Wiley, 2021; pp 513–551. doi:10.1002/9781119531975.ch13
  • Pal, P.; Mondal, S.; Chatterjee, A.; Saha, R.; Chakrabarty, K.; Das, G. K. Revisited the mechanism of cobalt(III) catalyzed cyanation of arenes and heteroarenes: A DFT study. Computational and Theoretical Chemistry 2021, 1201, 113289. doi:10.1016/j.comptc.2021.113289
  • Ikawa, T.; Yamamoto, Y.; Heguri, A.; Fukumoto, Y.; Murakami, T.; Takagi, A.; Masuda, Y.; Yahata, K.; Aoyama, H.; Shigeta, Y.; Tokiwa, H.; Akai, S. Could London Dispersion Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to the Synthesis of Helical Biphenylenes. Journal of the American Chemical Society 2021, 143, 10853–10859. doi:10.1021/jacs.1c05434
  • Aniban, X.; Hartwig, B.; Wuttke, A.; Mata, R. A. Dispersion forces in chirality recognition – a density functional and wave function theory study of diols. Physical chemistry chemical physics : PCCP 2021, 23, 12093–12104. doi:10.1039/d1cp01225h
  • Wu, F.; Deraedt, C.; Cornaton, Y.; Contreras-García, J.; Boucher, M.; Karmazin, L.; Bailly, C.; Djukic, J.-P. Making Base-Assisted C–H Bond Activation by Cp*Co(III) Effective: A NoncovalentInteraction-Inclusive Theoretical Insight and Experimental Validation. Organometallics 2020, 39, 2609–2629. doi:10.1021/acs.organomet.0c00253
  • Giese, M.; Albrecht, M. Alkyl-Alkyl Interactions in the Periphery of Supramolecular Entities: From the Evaluation of Weak Forces to Applications. ChemPlusChem 2020, 85, 715–724. doi:10.1002/cplu.202000077
  • Schlottmann, M.; Van Craen, D.; Baums, J.; Funes-Ardoiz, I.; Wiederhold, C.; Oppel, I. M.; Albrecht, M. Stability of Hierarchically Formed Titanium(IV) Tris(catecholate ester) Helicates with Cyclohexyl Substituents in DMSO. Inorganic chemistry 2020, 59, 1758–1762. doi:10.1021/acs.inorgchem.9b02988
  • Holtrop, F.; Visscher, K. W.; Jupp, A. R.; Slootweg, J. C. Steric attraction: A force to be reckoned with. Advances in Physical Organic Chemistry; Elsevier, 2020; Vol. 54, pp 119–141. doi:10.1016/bs.apoc.2020.08.001
  • Strauss, M. A.; Wegner, H. A. Exploring London Dispersion and Solvent Interactions at Alkyl-Alkyl Interfaces Using Azobenzene Switches. Angewandte Chemie (International ed. in English) 2019, 58, 18552–18556. doi:10.1002/anie.201910734
  • Strauss, M. A.; Wegner, H. A. Evaluierung von London‐Dispersions‐ und Lösungsmittel‐Interaktionen an Alkyl‐Alkyl‐Grenzflächen mittels Azobenzolschaltern. Angewandte Chemie 2019, 131, 18724–18729. doi:10.1002/ange.201910734
  • Uchida, K.; Togo, H. Transformation of aromatic bromides into aromatic nitriles with n-BuLi, pivalonitrile, and iodine under metal cyanide-free conditions. Tetrahedron 2019, 75, 130550. doi:10.1016/j.tet.2019.130550
  • Lu, Q.; Neese, F.; Bistoni, G. London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study. Physical chemistry chemical physics : PCCP 2019, 21, 11569–11577. doi:10.1039/c9cp01309a
Other Beilstein-Institut Open Science Activities