Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex

Kazuhiko Maeda, Daehyeon An, Ryo Kuriki, Daling Lu and Osamu Ishitani
Beilstein J. Org. Chem. 2018, 14, 1806–1812. https://doi.org/10.3762/bjoc.14.153

Cite the Following Article

Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex
Kazuhiko Maeda, Daehyeon An, Ryo Kuriki, Daling Lu and Osamu Ishitani
Beilstein J. Org. Chem. 2018, 14, 1806–1812. https://doi.org/10.3762/bjoc.14.153

How to Cite

Maeda, K.; An, D.; Kuriki, R.; Lu, D.; Ishitani, O. Beilstein J. Org. Chem. 2018, 14, 1806–1812. doi:10.3762/bjoc.14.153

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 298.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ncube, P.; Mochane, M. J. Visible-Light-Driven CO2 Photoreduction Using Ruthenium (II) Complexes: Mechanisms, Hybrid Systems and Recent Advances. Catalysts 2025, 15, 1036. doi:10.3390/catal15111036
  • Nguyen, P. N.; Nguyen, L.-C.; Nguyen, T. M.; Tran, C. H.; Bui, V. B.; Tran, Q.-H.; Vattikuti, S. V. P.; Nguyen Dang, N. Visible-Light-Driven Photocatalytic CO 2 Reduction to CO Using g-C 3 N 4 Nanostructures Coupled with a Molecular Re(I) Catalyst for Solar Fuel Generation. ACS Applied Nano Materials 2025, 8, 20438–20449. doi:10.1021/acsanm.5c03672
  • Elizabeth, P. G.; Jayapriya, E.; Balusamy, T.; Narayanan, T. S.; Ravichandran, K. Role of incorporation of nanofillers on the anti-corrosion properties of epoxy-g-C3N4 composite coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 727, 138321. doi:10.1016/j.colsurfa.2025.138321
  • Hackbarth, U.; Argirusis, C.; Sourkouni, G. Preparation of g-C3N4 and Application in the Photocatalytic Decoloration of Dermacid Red. Journal of Bio-catalysis and Photocatalysis 2025, 5. doi:10.2174/012665976x376057250403143720
  • Yusoff, Y. N.; Shaari, N.; Raduwan, N. F.; Mohamed, M. A.; Kamarudin, S. K.; Loh, K. S.; Hazan, R.; Ahmad Wani, A. Enhanced specific surface area in 2D graphitic carbon nitride nanosheets via two-step calcination temperature-induced structural transformation. Chemical Engineering Communications 2025, 212, 1452–1462. doi:10.1080/00986445.2025.2461634
  • Saeidi Tabar, F.; pourmadadi, M.; Yazdian, F.; Rashedi, H.; Rahdar, A.; Fathi-karkan, S.; Romanholo Ferreira, L. F. Ultrasensitive aptamer-based electrochemical nanobiosensor in diagnosis of prostate cancer using 2D:2D reduced graphene oxide/graphitic carbon nitride decorated with Au nanoparticles. European Journal of Medicinal Chemistry Reports 2024, 12, 100192. doi:10.1016/j.ejmcr.2024.100192
  • Tan, K.-H.; Lin, C.-Y.; Shih, Y.-h. Microwave-Assisted Synthesis of Hydrangea-Like Graphitic Carbon Nitride as an Effective Photocatalyst in Dye Degradation and Hydrogen Generation. ACS ES&T Water 2024, 4, 5902–5912. doi:10.1021/acsestwater.4c00879
  • Maru, B. A.; Rao, V. J.; Kane, S.; Goutam, U. K.; Modi, C. K. Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition. ChemPhotoChem 2024, 8. doi:10.1002/cptc.202400137
  • Ilakiya, S.; Binitta, K.; Karthigeswaramoorthi, V.; Thangadurai, P. Reaction parameter optimization and photocatalytic activity of graphitic carbon nitride for the degradation of anionic and cationic dyes: A study on environmental remediation. Journal of Materials Research 2024, 39, 3089–3102. doi:10.1557/s43578-024-01443-0
  • Mousavi-Zadeh, S. H.; Poursalehi, R.; Yourdkhani, A. Photocatalytic activity of self-heterojunctioned intermediate phases in HCl protonated and HNO3 deconjugated g-C3N4 nanostructures. Heliyon 2024, 10, e38025. doi:10.1016/j.heliyon.2024.e38025
  • Ali, A. E.; Mohamed, A. M.; Mohamed, G. G. Carbon paste based sensor for sensitive Cr(III) ion determination in different water samples and anti-diabetic supplement. Scientific reports 2024, 14, 19059. doi:10.1038/s41598-024-69176-y
  • Djoko T., S. Y.; Njoyim T., E.; Nguyen, A. D.; Yang, J.; Küçükkeçeci, H.; Kutorglo, E. M.; Radhakrishnan, B.; Schwarzburg, K.; Huseyinova, S.; Das, P.; Tasbihi, M.; Schwarze, M.; Thomas, A.; Schomäcker, R. Polyoxometalate (POM) boosting the light-harvesting ability of graphitic carbon nitride for efficient photocatalytic hydrogen production. Catalysis Science & Technology 2024, 14, 2114–2129. doi:10.1039/d3cy00496a
  • Mishra, A.; Kim, D.; Altahtamouni, T.; Kasak, P.; Popelka, A.; Park, H.; Han, D. S. A comparative study on carbon neutral hydrogen carrier production: Formic acid from CO2 vs. ammonia. Journal of CO2 Utilization 2024, 82, 102756. doi:10.1016/j.jcou.2024.102756
  • Nawaz, A.; Taj, M. B.; Carabineiro, S. A. C. Graphitic carbon nitride as an efficient carrier for anti-cancer drug systems: A review. Next Nanotechnology 2024, 6, 100074. doi:10.1016/j.nxnano.2024.100074
  • S Abou-Elyazed, A.; Li, S.; Mohamed, G. G.; Li, X.; Meng, J.; S El-Sanafery, S. Graphitic Carbon Nitride/MOFs Hybrid Composite as Highly Selective and Sensitive Electrodes for Calcium Ion Detection. Molecules (Basel, Switzerland) 2023, 28, 8149. doi:10.3390/molecules28248149
  • Blall, E. G.; Toderas, M.; Ezzat, A. A.; Abdou, H. A.; Mahmoud, A. S.; Shokry, F. Photocatalytic Degradation of Chlorinated Hydrocarbons: The By-Product of the Petrochemical Industry Using Ag-Cu/Graphite Bimetallic Carbon Nitride. Sustainability 2023, 15, 16114. doi:10.3390/su152216114
  • Pallavolu, M. R.; Banerjee, A. N.; Joo, S. W.; Jung, J. H. Two-step pyrolysis-hydrothermal synthesis of hierarchical nickel‑cobalt phosphate nanoflakes decorated on g-C3N4 nanosheets for high-performance hybrid supercapacitors. Journal of Energy Storage 2023, 72, 108725. doi:10.1016/j.est.2023.108725
  • Piercy, V. L.; Neri, G.; Manning, T. D.; Pugliese, A.; Blanc, F.; Palgrave, R. G.; Cowan, A. J.; Rosseinsky, M. J. Band structure engineering of carbon nitride hybrid photocatalysts for CO2 reduction in aqueous solutions. Journal of Materials Chemistry A 2023, 11, 18356–18364. doi:10.1039/d3ta02872k
  • Nguyen, P. N.; Tran, T. T.; Thi Nguyen, Q. A.; Kawazoe, Y.; Vattikuti, S. V. P.; Le, L. V.; Bui, V. Q.; Nguyen, T. M.; Dang, N. N. Constructing a rhenium complex supported on g-C3N4 for efficient visible-light-driven photoreduction of CO2 to CO via a novel Z-scheme heterojunction. Journal of Materials Chemistry A 2023, 11, 17145–17158. doi:10.1039/d3ta01502e
  • Patra, R.; Dash, P.; Panda, P. K.; Yang, P.-C. A Breakthrough in Photocatalytic Wastewater Treatment: The Incredible Potential of g-C3N4/Titanate Perovskite-Based Nanocomposites. Nanomaterials (Basel, Switzerland) 2023, 13, 2173. doi:10.3390/nano13152173
Other Beilstein-Institut Open Science Activities