Tetrathiafulvalene – a redox-switchable building block to control motion in mechanically interlocked molecules

Hendrik V. Schröder and Christoph A. Schalley
Beilstein J. Org. Chem. 2018, 14, 2163–2185. https://doi.org/10.3762/bjoc.14.190

Cite the Following Article

Tetrathiafulvalene – a redox-switchable building block to control motion in mechanically interlocked molecules
Hendrik V. Schröder and Christoph A. Schalley
Beilstein J. Org. Chem. 2018, 14, 2163–2185. https://doi.org/10.3762/bjoc.14.190

How to Cite

Schröder, H. V.; Schalley, C. A. Beilstein J. Org. Chem. 2018, 14, 2163–2185. doi:10.3762/bjoc.14.190

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 689.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Janovský, P.; Springer, A.; Filip, J.; Prucková, Z.; Nečas, M.; Rouchal, M.; Schalley, C. A.; Vícha, R. para-Phenylenediamine Dimer as a Redox-Active Guest for Supramolecular Systems. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, e202400535. doi:10.1002/chem.202400535
  • Schøttler, C.; Lund-Rasmussen, K.; Broløs, L.; Vinterberg, P.; Bazikova, E.; Pedersen, V. B. R.; Nielsen, M. B. Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units. Beilstein journal of organic chemistry 2024, 20, 59–73. doi:10.3762/bjoc.20.8
  • Granhøj, J.; Zalibera, M.; Malček, M.; Bliksted Roug Pedersen, V.; Erbs Hillers-Bendtsen, A.; Mikkelsen, K. V.; Rapta, P.; Brøndsted Nielsen, M. Extended Tetrathiafulvalenes with Fluoreno[3,2-b]fluorene and Diindeno[1,2-b : 1',2'-i]anthracene Cores. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 30, e202302688. doi:10.1002/chem.202302688
  • Muñoz, J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. Advanced materials (Deerfield Beach, Fla.) 2023, 36, e2305546. doi:10.1002/adma.202305546
  • Delfino, C. L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K. S.; Van der Auweraer, M.; Geerts, Y. H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S. Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling. The Journal of Physical Chemistry C 2023, 127, 23023–23033. doi:10.1021/acs.jpcc.3c04913
  • Jensen, S. K.; Neumann, M. S.; Frederiksen, R.; Skavenborg, M. L.; Larsen, M. C.; Wessel, S. E.; Jeppesen, J. O. Mechanistic studies of isomeric [2]rotaxanes consisting of two different tetrathiafulvalene units reveal that the movement of cyclobis(paraquat-p-phenylene) can be controlled. Chemical science 2023, 14, 12366–12378. doi:10.1039/d3sc04408d
  • Gao, Y.; Liu, Z.; Li, T.; Zhao, W. Mixed‐Valence BN‐Doped Corannulene Trimer Radical Cations. Angewandte Chemie 2023, 135. doi:10.1002/ange.202314006
  • Gao, Y.; Liu, Z.; Li, T.; Zhao, W. Mixed-Valence BN-Doped Corannulene Trimer Radical Cations. Angewandte Chemie (International ed. in English) 2023, 62, e202314006. doi:10.1002/anie.202314006
  • Wang, X.; Lashgari, A.; Siwakoti, R.; Gautam, R. K.; McGrath, J. J.; Sarkar, P.; Naber, G.; Chai, J.; Jiang, J. J. Tetrathiafulvalene (TTF) derivatives as catholytes for dual-type redox flow batteries: molecular engineering enables high energy density and cyclability. Journal of Materials Chemistry A 2023, 11, 19056–19065. doi:10.1039/d3ta03606e
  • Granhøj, J.; Bliksted Roug Pedersen, V.; Lundgård Krøll, P.; Broløs, L.; Brøndsted Nielsen, M. Synthesis of 2-(Methylthio)-1,3-dithioles from 1,3-Dithiole-2-thiones: Important Building Blocks in Tetrathiafulvalene Chemistry. The Journal of organic chemistry 2023, 88, 12853–12856. doi:10.1021/acs.joc.3c01369
  • Azov, V. A.; De Beer, F. J. Redox‐Responsive Macrocyclic Hosts Based on Calix[4]arene and Calix[4]resorcinarene Scaffolds. Israel Journal of Chemistry 2023. doi:10.1002/ijch.202300075
  • Rim, M.; Kang, D.-G.; Kim, W.; Jang, J.; Oh, M.; Wi, Y.; Park, S.; Tran, D. T.; Ha, M.; Jeong, K.-U. Encryptable Electrochromic Smart Windows: Uniaxially Oriented and Polymerized Hierarchical Nanostructures Constructed by Self-Assembly of Tetrathiafulvalene-Based Reactive Mesogens. ACS nano 2023, 17, 14750–14760. doi:10.1021/acsnano.3c02777
  • Chen, D.; Shen, H.; Chen, D.; Chen, N.; Meng, Y. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries. ACS applied materials & interfaces 2023, 15, 31491–31501. doi:10.1021/acsami.3c05387
  • Molenda, R.; Polkaehn, J.; Argüello Cordero, M. A.; Villinger, A.; Ehlers, P.; Lochbrunner, S.; Langer, P. Synthesis and Properties of Thieno[2',3',4':4,5]naphtho[1,8-cd]pyridines. The Journal of organic chemistry 2023, 88, 8802–8824. doi:10.1021/acs.joc.3c00632
  • Neumann, M. S.; Smith, A. F.; Jensen, S. K.; Frederiksen, R.; Skavenborg, M. L.; Jeppesen, J. O. Evaluating the energy landscape of an out-of-equilibrium bistable [2]rotaxane containing monopyrrolotetrathiafulvalene. Chemical communications (Cambridge, England) 2023, 59, 6335–6338. doi:10.1039/d3cc00360d
  • Witte, J. F.; Wasternack, J.; Wei, S.; Schalley, C. A.; Paulus, B. The Interplay of Weakly Coordinating Anions and the Mechanical Bond: A Systematic Study of the Explicit Influence of Counterions on the Properties of (Pseudo)rotaxanes. Molecules (Basel, Switzerland) 2023, 28, 3077. doi:10.3390/molecules28073077
  • Beil, S. B.; Wonink, M. B.; Feringa, B. L. Incorporating sulfur into redox-active reagents and materials. Tetrahedron 2023, 132, 133262. doi:10.1016/j.tet.2023.133262
  • Jeppesen, J. O.; Neumann, M. S. Non-Symmetric Bispyrrolotetrathiafulvalene Building Blocks. Synthesis 2023, 55, 2019–2026. doi:10.1055/a-2020-9005
  • Nayak, M. K.; Sarkar, P.; Elvers, B. J.; Mehta, S.; Zhang, F.; Chrysochos, N.; Krummenacher, I.; Vijayakanth, T.; Narayanan, R. S.; Dolai, R.; Roy, B.; Malik, V.; Rawat, H.; Mondal, A.; Boomishankar, R.; Pati, S. K.; Braunschweig, H.; Schulzke, C.; Ravat, P.; Jana, A. A bis-NHC-CAAC dimer derived dicationic diradical. Chemical science 2022, 13, 12533–12539. doi:10.1039/d2sc03937k
  • Nakamura, M.; Hyakutake, R.; Morisako, S.; Sasamori, T.; Mizuhata, Y.; Tokitoh, N.; Nakashima, K.; Fukumoto, H.; Agou, T. Boron complexes of π-extended nitroxide ligands exhibiting three-state redox processes and near-infrared-II (NIR-II) absorption properties. Dalton transactions (Cambridge, England : 2003) 2022, 51, 13675–13680. doi:10.1039/d2dt02545k
Other Beilstein-Institut Open Science Activities