The enzymes of microbial nicotine metabolism

Paul F. Fitzpatrick
Beilstein J. Org. Chem. 2018, 14, 2295–2307. https://doi.org/10.3762/bjoc.14.204

Cite the Following Article

The enzymes of microbial nicotine metabolism
Paul F. Fitzpatrick
Beilstein J. Org. Chem. 2018, 14, 2295–2307. https://doi.org/10.3762/bjoc.14.204

How to Cite

Fitzpatrick, P. F. Beilstein J. Org. Chem. 2018, 14, 2295–2307. doi:10.3762/bjoc.14.204

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 84.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zuo, N.; Zuo, F.; Liu, Y.; Xiang, B. Genome Editing Using the Endogenous Type I-E CRISPR-Cas System in Lactobacillus paracasei ATCC334. Biotechnology and applied biochemistry 2025. doi:10.1002/bab.70056
  • Zhang, Z.; Bandivadekar, P. R.; Gaunt, A. J.; Ahn, S.-H.; Barkman, T. J.; Stull, F. Ancestral evolution of oxidase activity in a class of (S)-nicotine and (S)-6-hydroxynicotine-degrading flavoenzymes. The Journal of biological chemistry 2025, 301, 110360. doi:10.1016/j.jbc.2025.110360
  • Zhang, Z.; Freeland, K.; Stull, F. Role of glutamate 292 and lysine 331 in catalysis for the flavoenzyme (S)-6-hydroxynicotine oxidase from Shinella sp. HZN7. Archives of biochemistry and biophysics 2025, 771, 110492. doi:10.1016/j.abb.2025.110492
  • Zhang, Z.; Freeland, K.; Stull, F. Role of glutamate 292 and lysine 331 in catalysis for the flavoenzyme (S)-6-hydroxynicotine oxidase from Shinella sp. HZN7. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.05.21.655333
  • Kapaothong, Y.; Pimviriyakul, P. Structurally guided engineering of flavin-dependent nicotine dehydrogenase. Archives of biochemistry and biophysics 2025, 770, 110471. doi:10.1016/j.abb.2025.110471
  • Hu, W.; Yuan, J.; Fei, J.; Imdad, K.; Yang, P.; Huang, S.; Mao, D.; Yang, J. Shaping the future of tobacco through microbial insights: a review of advances and applications. Frontiers in bioengineering and biotechnology 2025, 13, 1548323. doi:10.3389/fbioe.2025.1548323
  • Zhang, Z.; Bandivadekar, P. R.; Gaunt, A. J.; Ahn, S.-H.; Barkman, T. J.; Stull, F. Ancestral evolution of oxidase activity in a class of (S)-nicotine and (S)-6-hydroxynicotine degrading flavoenzymes. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.04.24.649827
  • El-Sabeh, A.; Mlesnita, A.-M.; Mihasan, M. Integrated transcriptomic and proteomic analysis of nicotine metabolism in Paenarthrobacter nicotinovorans ATCC 49919. International Biodeterioration & Biodegradation 2025, 199, 106017. doi:10.1016/j.ibiod.2025.106017
  • Fitzpatrick, P. F. Conservation of mechanism in flavoprotein-catalyzed amine oxidation. Archives of biochemistry and biophysics 2024, 764, 110242. doi:10.1016/j.abb.2024.110242
  • Yang, X.; Zhangyi, Z.; Yu, A.; Zhou, Q.; Xia, A.; Qiu, J.; Cai, M.; Chu, X.; Li, L.; Feng, Z.; Luo, Z.; Sun, G.; Zhang, J.; Geng, M.; Chen, S.; Xie, Z. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS neuroscience & therapeutics 2024, 30, e14847. doi:10.1111/cns.14847
  • Chu, L. L.; My, L. Q.; Quang, H. N. Microbial alkaloids and their pharmaceutical and agricultural application. Fungal Secondary Metabolites; Elsevier, 2024; pp 73–90. doi:10.1016/b978-0-323-95241-5.00018-6
  • Ye, C.; Liu, D.; Huang, K.; Li, D.; Ma, X.; Jin, Y.; Xiong, H. Isolation of starch and protein degrading strain Bacillus subtilis FYZ1-3 from tobacco waste and genomic analysis of its tolerance to nicotine and inhibition of fungal growth. Frontiers in microbiology 2023, 14, 1260149. doi:10.3389/fmicb.2023.1260149
  • Ruzicka, J.; Julinova, M.; Rouchal, M.; Salac, J.; Vanharova, L.; Urban, J.; Pancochova, K. Degradation of antibacterial 1-octylpyrrolidin-2-one by bacterial pairs isolated from river water and soil. Environmental science and pollution research international 2022, 29, 45292–45302. doi:10.1007/s11356-022-19121-1
  • Zhang, Z.; Mei, X.; He, Z.; Xie, X.; Yang, Y.; Mei, C.; Xue, D.; Hu, T.; Shu, M.; Zhong, W. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Applied microbiology and biotechnology 2022, 106, 889–904. doi:10.1007/s00253-022-11763-y
  • Mihasan, M.; Boiangiu, R. S.; Guzun, D.; Babii, C.; Aslebagh, R.; Channaveerappa, D.; Dupree, E. J.; Darie, C. C. Time-Dependent Analysis of Paenarthrobacter nicotinovorans pAO1 Nicotine-Related Proteome. ACS omega 2021, 6, 14242–14251. doi:10.1021/acsomega.1c01020
  • Tararina, M. A.; Dam, K. K.; Dhingra, M.; Janda, K. D.; Palfey, B. A.; Allen, K. N. Fast Kinetics Reveals Rate-Limiting Oxidation and the Role of the Aromatic Cage in the Mechanism of the Nicotine-Degrading Enzyme NicA2. Biochemistry 2021, 60, 259–273. doi:10.1021/acs.biochem.0c00855
  • Dulchavsky, M.; Clark, C. T.; Bardwell, J. C.; Stull, F. A cytochrome c is the natural electron acceptor for nicotine oxidoreductase. Nature chemical biology 2021, 17, 344–350. doi:10.1038/s41589-020-00712-3
  • Li, J.; Shen, M.; Chen, Z.; Pan, F.; Yang, Y.; Shu, M.; Chen, G.; Yang, J.; Zhang, F.; Linhardt, R. J.; Zhong, W. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein expression and purification 2020, 178, 105767. doi:10.1016/j.pep.2020.105767
  • Deay, D. O.; Colvert, K. K.; Gao, F.; Seibold, S.; Goyal, P.; Aillon, D. V.; Petillo, P. A.; Richter, M. L. An active site mutation in 6-hydroxy-l-Nicotine oxidase from Arthrobacter nicotinovorans changes the substrate specificity in favor of (S)-nicotine. Archives of biochemistry and biophysics 2020, 692, 108520. doi:10.1016/j.abb.2020.108520
  • Brandsch, R.; Mihasan, M. A Soil Bacterial Catabolic Pathway on the Move: Transfer of Nicotine Catabolic Genes Between Arthrobacter Genus Megaplasmids and Invasion by Mobile Elements. Journal of biosciences 2020, 45, 1–12. doi:10.1007/s12038-020-00030-9
Other Beilstein-Institut Open Science Activities