Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source

Tetsuaki Fujihara and Yasushi Tsuji
Beilstein J. Org. Chem. 2018, 14, 2435–2460. https://doi.org/10.3762/bjoc.14.221

Cite the Following Article

Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source
Tetsuaki Fujihara and Yasushi Tsuji
Beilstein J. Org. Chem. 2018, 14, 2435–2460. https://doi.org/10.3762/bjoc.14.221

How to Cite

Fujihara, T.; Tsuji, Y. Beilstein J. Org. Chem. 2018, 14, 2435–2460. doi:10.3762/bjoc.14.221

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 359.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gordon, A. T.; Hosten, E. C.; van Vuuren, S.; Ogunlaja, A. S. Copper(II)-photocatalyzed Hydrocarboxylation of Schiff bases with CO2: antimicrobial evaluation and in silico studies of Schiff bases and unnatural α-amino acids. Journal of biomolecular structure & dynamics 2024, 1–14. doi:10.1080/07391102.2024.2301765
  • Ding, C.-L.; Zhong, J.-S.; Yan, H.; Ye, K.-Y. Electrochemical Hydro- and Deuterocarboxylation of Allenes. Synthesis 2023. doi:10.1055/a-2200-5332
  • Iwasawa, N. Catalytic Carbon Dioxide Fixation Reactions Based on Transition Metal Complexes and Their Systems. Bulletin of the Chemical Society of Japan 2023, 96, 824–841. doi:10.1246/bcsj.20230133
  • Fujihara, T. Carboxylation with CO2. Chemical Valorisation of Carbon Dioxide; The Royal Society of Chemistry, 2022; pp 19–61. doi:10.1039/9781839167645-00019
  • Yu, Z.; Shi, M. Recent advances in the electrochemically mediated chemical transformation of carbon dioxide. Chemical communications (Cambridge, England) 2022, 58, 13539–13555. doi:10.1039/d2cc05242c
  • Shigeno, M.; Kondo, Y.; Tohara, I.; Nozawa-Kumada, K. 1,5-Double-Carboxylation of 2-Alkylheteroarenes Mediated by a Combined Brønsted Base System. Synlett 2022, 34, 1376–1380. doi:10.1055/a-1990-5360
  • Miyaji, A.; Amao, Y. Mechanism of Formate Dehydrogenase Catalyzed CO2 Reduction with the Cation Radical of a 2,2′-Bipyridinium Salt Based on a Theoretical Approach. Bulletin of the Chemical Society of Japan 2022, 95, 1703–1714. doi:10.1246/bcsj.20220228
  • Tang, S.; Zhao, X.; Yang, L.; Li, B.; Wang, B. Copper‐Catalyzed Carboxylation of Aryl Thianthrenium Salts with CO2. Angewandte Chemie 2022, 134. doi:10.1002/ange.202212975
  • Tang, S.; Zhao, X.; Yang, L.; Li, B.; Wang, B. Copper-Catalyzed Carboxylation of Aryl Thianthrenium Salts with CO2. Angewandte Chemie (International ed. in English) 2022, 61, e202212975. doi:10.1002/anie.202212975
  • Mao, B.; Wei, J.-S.; Shi, M. Recent advancements in visible-light-driven carboxylation with carbon dioxide. Chemical communications (Cambridge, England) 2022, 58, 9312–9327. doi:10.1039/d2cc03380a
  • Yu, R.; Cai, S.-Z.; Li, C.; Fang, X. Nickel-Catalyzed Asymmetric Hydroaryloxy- and Hydroalkoxycarbonylation of Cyclopropenes. Angewandte Chemie (International ed. in English) 2022, 61, e202200733. doi:10.1002/anie.202200733
  • Yu, R.; Cai, S.; Li, C.; Fang, X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angewandte Chemie 2022, 134. doi:10.1002/ange.202200733
  • Shigeno, M.; Tohara, I.; Sasaki, K.; Nozawa-Kumada, K.; Kondo, Y. Combined Brønsted Base-Promoted CO2 Fixation into Benzylic C-H Bonds of Alkylarenes. Organic letters 2022, 24, 4825–4830. doi:10.1021/acs.orglett.2c01986
  • doi:10.1002/9783527804801.ch9
  • Fujihara, T. doi:10.1002/9783527831883.ch21
  • Shigeno, M.; Hanasaka, K.; Tohara, I.; Izumi, K.; Yamakoshi, H.; Kwon, E.; Nozawa-Kumada, K.; Kondo, Y. Direct C-H Carboxylation Forming Polyfunctionalized Aromatic Carboxylic Acids by Combined Brønsted Bases. Organic letters 2022, 24, 809–814. doi:10.1021/acs.orglett.1c03866
  • Davies, J.; Janssen-Müller, D.; Zimin, D. P.; Day, C. S.; Yanagi, T.; Elfert, J.; Martin, R. Ni-Catalyzed Carboxylation of Aziridines en Route to β-Amino Acids. Journal of the American Chemical Society 2021, 143, 4949–4954. doi:10.1021/jacs.1c01916
  • Zhong, J.-S.; Yu, Y.; Zhang, D.; Ye, K.-Y. Merging cobalt catalysis and electrochemistry in organic synthesis. Chinese Chemical Letters 2021, 32, 963–972. doi:10.1016/j.cclet.2020.08.011
  • Korvorapun, K.; Samanta, R. C.; Rogge, T.; Ackermann, L. Remote CH Bond Functionalizations; Wiley, 2021; pp 137–167. doi:10.1002/9783527824137.ch5
  • Shigeno, M.; Sasaki, K.; Hanasaka, K.; Tohara, I.; Nozawa-Kumada, K.; Kondo, Y. Combined brønsted-base-mediated direct C-H carboxylation of heteroarenes with CO2. HETEROCYCLES 2021, 103, 592. doi:10.3987/rev-20-sr(k)6
Other Beilstein-Institut Open Science Activities