Cite the Following Article
Protein–protein interactions in bacteria: a promising and challenging avenue towards the discovery of new antibiotics
Laura Carro
Beilstein J. Org. Chem. 2018, 14, 2881–2896.
https://doi.org/10.3762/bjoc.14.267
How to Cite
Carro, L. Beilstein J. Org. Chem. 2018, 14, 2881–2896. doi:10.3762/bjoc.14.267
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- van Wier, S. P.; Beekman, A. M. Peptide design to control protein-protein interactions. Chemical Society reviews 2025, 54, 1684–1698. doi:10.1039/d4cs00243a
- Bollati, M.; Fasola, E.; Pieraccini, S.; Freddi, F.; Cocomazzi, P.; Oliva, F.; Klußmann, M.; Maspero, A.; Piarulli, U.; Ferrara, S.; Pellegrino, S.; Bertoni, G.; Gazzola, S. Impairing protein-protein interactions in an essential tRNA modification complex: An innovative antimicrobial strategy against Pseudomonas aeruginosa. Journal of peptide science : an official publication of the European Peptide Society 2024, 31, e3658. doi:10.1002/psc.3658
- Cruz-Bautista, R.; Zelarayan-Agüero, A.; Ruiz-Villafán, B.; Escalante-Lozada, A.; Rodríguez-Sanoja, R.; Sánchez, S. An overview of the two-component system GarR/GarS role on antibiotic production in Streptomyces coelicolor. Applied microbiology and biotechnology 2024, 108, 306. doi:10.1007/s00253-024-13136-z
- Gómez Borrego, J.; Torrent Burgas, M. Structural assembly of the bacterial essential interactome. eLife 2024, 13. doi:10.7554/elife.94919
- Chengan, K.; Hind, C.; Stanley, M.; Wand, M. E.; Nagappa, L. K.; Howland, K.; Hanson, T.; Martín-Escolano, R.; Tsaousis, A. D.; Bengoechea, J. A.; Mark Sutton, J.; Smales, C. M.; Moore, S. J. A cell-free strategy for host-specific profiling of intracellular antibiotic sensitivity and resistance. npj antimicrobials and resistance 2023, 1, 16. doi:10.1038/s44259-023-00018-z
- Halawa, M.; Akantibila, M.; Reid, B. E.; Carabetta, V. J. Therapeutic proteins have the potential to become new weapons in the fight against antibiotic resistance. Frontiers in Bacteriology 2023, 2. doi:10.3389/fbrio.2023.1304444
- Murugesan, J.; Mubarak, S. J.; Vedagiri, H. Design of novel anti-quorum sensing peptides targeting LuxO to combat Vibrio cholerae pathogenesis. In silico pharmacology 2023, 11, 30. doi:10.1007/s40203-023-00172-2
- Chen, J.; Kuhn, L. A.; Raschka, S. Techniques for Developing Reliable Machine Learning Classifiers Applied to Understanding and Predicting Protein:Protein Interaction Hot Spots. Methods in molecular biology (Clifton, N.J.) 2023, 2714, 235–268. doi:10.1007/978-1-0716-3441-7_14
- Gómez Borrego, J.; Torrent, M. B. Structural assembly of the bacterial essential interactome. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.06.14.544900
- Chengan, K.; Hind, C.; Nagappa, L.; Wand, M. E.; Hanson, T.; Escolano, R. M.; Tsaousis, A.; Bengoechea, J. A.; Mark Sutton, J.; Smales, C. M.; Moore, S. J. A cell-free strategy for profiling intracellular antibiotic sensitivity and resistance. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.04.13.536698
- Catara, G.; Caggiano, R.; Palazzo, L. The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens (Basel, Switzerland) 2023, 12, 240. doi:10.3390/pathogens12020240
- Chen, J.; Kuhn, L. A.; Raschka, S. Techniques for Developing Reliable Machine Learning Classifiers Applied to Understanding and Predicting Protein:Protein Interaction Hot Spots. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.12.26.521948
- Yu, W.; Weber, D. J.; MacKerell, A. D. Computer-Aided Drug Design: An Update. Methods in molecular biology (Clifton, N.J.) 2022, 2601, 123–152. doi:10.1007/978-1-0716-2855-3_7
- Gómez Borrego, J.; Torrent Burgas, M. Analysis of Host-Bacteria Protein Interactions Reveals Conserved Domains and Motifs That Mediate Fundamental Infection Pathways. International journal of molecular sciences 2022, 23, 11489. doi:10.3390/ijms231911489
- Champney, S. Macromolecular Structure Assembly as a Novel Antibiotic Target. Antibiotics (Basel, Switzerland) 2022, 11, 937. doi:10.3390/antibiotics11070937
- James, K.; Muñoz-Muñoz, J. Computational Network Inference for Bacterial Interactomics. mSystems 2022, 7, e0145621. doi:10.1128/msystems.01456-21
- Zhu, F.; Li, F.; Deng, L.; Meng, F.; Liang, Z. Protein Interaction Network Reconstruction with a Structural Gated Attention Deep Model by Incorporating Network Structure Information. Journal of chemical information and modeling 2022, 62, 258–273. doi:10.1021/acs.jcim.1c00982
- Bouvier, B. Protein-Protein Interface Topology as a Predictor of Secondary Structure and Molecular Function Using Convolutional Deep Learning. Journal of chemical information and modeling 2021, 61, 3292–3303. doi:10.1021/acs.jcim.1c00644
- Yaacob, M. F.; Abdullah, F. F. J.; Jamil, N. M.; Yunus, N. M.; Aazmi, S.; Yahya, M. F. Z. R. The effect of dimethyl sulfoxide on Corynebacterium pseudotuberculosis biofilm: An in silico prediction and experimental validation. Journal of Physics: Conference Series 2021, 1874, 012055. doi:10.1088/1742-6596/1874/1/012055
- Kahan, R.; Worm, D. J.; de Castro, G. V.; Ng, S.; Barnard, A. Modulators of protein–protein interactions as antimicrobial agents. RSC chemical biology 2021, 2, 387–409. doi:10.1039/d0cb00205d
Patents
- QUEMARD ANNAÏK; BARDOU FABIENNE; BORIES PASCALINE; DUCOUX-PETIT MANUELLE; ROCHE PHILIPPE; CONSTANT PATRICIA; TRANIER SAMUEL; BON CÉCILE; MOUREY LIONEL; MARCOUX JULIEN. INNOVATIVE MOLECULES DECREASING VIRULENCE OF MYCOBACTERIUM FOR THE TREATMENT OF TUBERCULOSIS. EP 4296674 A1, Dec 27, 2023.