Cite the Following Article
Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing
Françoise Debart, Christelle Dupouy and Jean-Jacques Vasseur
Beilstein J. Org. Chem. 2018, 14, 436–469.
https://doi.org/10.3762/bjoc.14.32
How to Cite
Debart, F.; Dupouy, C.; Vasseur, J.-J. Beilstein J. Org. Chem. 2018, 14, 436–469. doi:10.3762/bjoc.14.32
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 231.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Miyaji, K.; Takeuchi, K.; Seio, K. Topological Switch-OFF and β-Galactosidase-Triggered Switch-ON of Cyclic Antisense Oligonucleotides via CuAAC for Controlled RNA Cleavage. Bioconjugate chemistry 2025, 36, 1820–1837. doi:10.1021/acs.bioconjchem.5c00295
- Miyaji, K.; Masaki, Y.; Seio, K. Synthesis of Prodrug-Type Oligonucleotides Modified With a Galactosylated Self-Immolative Linker Cleavable by β-Galactosidase. Current protocols 2025, 5, e70128. doi:10.1002/cpz1.70128
- Hayashi, J.; Ochi, Y.; Senpuku, K.; Wada, S.-I.; Wada, F.; Harada-Shiba, M.; Urata, H. Rational design of prodrug-type apoB-targeted siRNA for nuclease resistance improvement without compromising gene silencing potency. Bioorganic & medicinal chemistry 2024, 104, 117693. doi:10.1016/j.bmc.2024.117693
- Sugimoto, N.; Hayashi, J.; Funaki, R.; Wada, S.-I.; Wada, F.; Harada-Shiba, M.; Urata, H. Prodrug-Type Phosphotriester Oligonucleotides with Linear Disulfide Promoieties Responsive to Reducing Environment. Chembiochem : a European journal of chemical biology 2023, 24, e202300526. doi:10.1002/cbic.202300526
- Inagaki, M.; Wada, T. External Stimulation-Responsive Artificial Nucleic Acids: Peptide Ribonucleic Acid (PRNA)-Programmed Assemblies. Handbook of Chemical Biology of Nucleic Acids; Springer Nature Singapore, 2023; pp 2747–2772. doi:10.1007/978-981-19-9776-1_93
- Wang, Z.; Fan, X.; Mu, G.; Zhao, X.; Wang, Q.; Wang, J.; Tang, X. Cathepsin B-activatable cyclic antisense oligonucleotides for cell-specific target gene knockdown in vitro and in vivo. Molecular therapy. Nucleic acids 2023, 33, 548–558. doi:10.1016/j.omtn.2023.07.022
- Inagaki, M.; Wada, T. External Stimulation-Responsive Artificial Nucleic Acids: Peptide Ribonucleic Acid (PRNA)-Programmed Assemblies. Handbook of Chemical Biology of Nucleic Acids; Springer Nature Singapore, 2023; pp 1–26. doi:10.1007/978-981-16-1313-5_93-1
- Hartmann, D.; Chowdhry, R.; Smith, J. M.; Booth, M. J. Orthogonal Light-Activated DNA for Patterned Biocomputing within Synthetic Cells. Journal of the American Chemical Society 2023, 145, 9471–9480. doi:10.1021/jacs.3c02350
- Pathania, A. S.; Kavita; Shah, R.; Singh, J.; Singh, D.; Chopra, D. S.; Singh, N.; Singh, R. S. Bonding through phosphodiester moiety: Its implications in pharmaceutical modifications. Polymer-Drug Conjugates; Elsevier, 2023; pp 245–278. doi:10.1016/b978-0-323-91663-9.00009-6
- Ning, S.; Zheng, L.; Gao, Q.; Shi, L.; Liu, Y.; Sun, C.; Zhang, Z.; Xiang, J. New electrotriggers:p-methoxycarbonylbenzyl (pMCB) as an electroremovable protecting group for carboxylic acids, phosphoric acids and alcohols. Green Chemistry 2022, 24, 5632–5636. doi:10.1039/d2gc00513a
- Le‐Vinh, B.; Akkuş‐Dağdeviren, Z. B.; Le, N. N.; Nazir, I.; Bernkop‐Schnürch, A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics 2022, 5. doi:10.1002/adtp.202100219
- Riebe, J.; Niemeyer, J. Mechanically Interlocked Molecules for Biomedical Applications. European Journal of Organic Chemistry 2021, 2021, 5106–5116. doi:10.1002/ejoc.202100749
- Zhou, X.; Pan, Y.; Yu, L.; Wu, J.; Li, Z.; Li, H.; Guan, Z.; Tang, X.; Yang, Z. Feasibility of cRGD conjugation at 5'-antisense strand of siRNA by phosphodiester linkage extension. Molecular therapy. Nucleic acids 2021, 25, 603–612. doi:10.1016/j.omtn.2021.08.004
- Lee, Y.-H.; Yu, E.; Park, C.-M. Programmable site-selective labeling of oligonucleotides based on carbene catalysis. Nature communications 2021, 12, 1681. doi:10.1038/s41467-021-21839-4
- Yang, L.; Dmochowski, I. J. Conditionally Activated ("Caged") Oligonucleotides. Molecules (Basel, Switzerland) 2021, 26, 1481. doi:10.3390/molecules26051481
- Clavé, G.; Reverte, M.; Vasseur, J.-J.; Smietana, M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC chemical biology 2021, 2, 94–150. doi:10.1039/d0cb00136h
- Kishimoto, Y.; Nakagawa, O.; Fujii, A.; Yoshioka, K.; Nagata, T.; Yokota, T.; Hari, Y.; Obika, S. 2',4'-BNA/LNA with 9-(2-Aminoethoxy)-1,3-diaza-2-oxophenoxazine Efficiently Forms Duplexes and Has Enhanced Enzymatic Resistance*. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 27, 2427–2438. doi:10.1002/chem.202003982
- Chen, C.; Wang, Z.; Jing, N.; Chen, W.; Tang, X. Photomodulation of Caged RNA Oligonucleotide Functions in Living Systems. ChemPhotoChem 2020, 5, 12–21. doi:10.1002/cptc.202000220
- Cheng, L.; Ma, D.; Lu, L.; Ouyang, D.; Xi, Z. Building Customizable Multisite-Targeting c-Myc shRNA Array into Branch-PCR-Constructed DNA Nanovectors for Enhanced Tumor Cell Suppression. ChemistrySelect 2020, 5, 10250–10255. doi:10.1002/slct.202002609
- Acevedo-Jake, A.; Ball, A. T.; Galli, M.; Kukwikila, M.; Denis, M.; Singleton, D. G.; Tavassoli, A.; Goldup, S. M. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. Journal of the American Chemical Society 2020, 142, 5985–5990. doi:10.1021/jacs.0c01670