Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing

Françoise Debart, Christelle Dupouy and Jean-Jacques Vasseur
Beilstein J. Org. Chem. 2018, 14, 436–469. https://doi.org/10.3762/bjoc.14.32

Cite the Following Article

Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing
Françoise Debart, Christelle Dupouy and Jean-Jacques Vasseur
Beilstein J. Org. Chem. 2018, 14, 436–469. https://doi.org/10.3762/bjoc.14.32

How to Cite

Debart, F.; Dupouy, C.; Vasseur, J.-J. Beilstein J. Org. Chem. 2018, 14, 436–469. doi:10.3762/bjoc.14.32

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 231.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sugimoto, N.; Hayashi, J.; Funaki, R.; Wada, S.-I.; Wada, F.; Harada-Shiba, M.; Urata, H. Prodrug-Type Phosphotriester Oligonucleotides with Linear Disulfide Promoieties Responsive to Reducing Environment. Chembiochem : a European journal of chemical biology 2023, 24, e202300526. doi:10.1002/cbic.202300526
  • Inagaki, M.; Wada, T. External Stimulation-Responsive Artificial Nucleic Acids: Peptide Ribonucleic Acid (PRNA)-Programmed Assemblies. Handbook of Chemical Biology of Nucleic Acids; Springer Nature Singapore, 2023; pp 2747–2772. doi:10.1007/978-981-19-9776-1_93
  • Wang, Z.; Fan, X.; Mu, G.; Zhao, X.; Wang, Q.; Wang, J.; Tang, X. Cathepsin B-activatable cyclic antisense oligonucleotides for cell-specific target gene knockdown in vitro and in vivo. Molecular therapy. Nucleic acids 2023, 33, 548–558. doi:10.1016/j.omtn.2023.07.022
  • Inagaki, M.; Wada, T. External Stimulation-Responsive Artificial Nucleic Acids: Peptide Ribonucleic Acid (PRNA)-Programmed Assemblies. Handbook of Chemical Biology of Nucleic Acids; Springer Nature Singapore, 2023; pp 1–26. doi:10.1007/978-981-16-1313-5_93-1
  • Hartmann, D.; Chowdhry, R.; Smith, J. M.; Booth, M. J. Orthogonal Light-Activated DNA for Patterned Biocomputing within Synthetic Cells. Journal of the American Chemical Society 2023, 145, 9471–9480. doi:10.1021/jacs.3c02350
  • Pathania, A. S.; Kavita; Shah, R.; Singh, J.; Singh, D.; Chopra, D. S.; Singh, N.; Singh, R. S. Bonding through phosphodiester moiety: Its implications in pharmaceutical modifications. Polymer-Drug Conjugates; Elsevier, 2023; pp 245–278. doi:10.1016/b978-0-323-91663-9.00009-6
  • Ning, S.; Zheng, L.; Gao, Q.; Shi, L.; Liu, Y.; Sun, C.; Zhang, Z.; Xiang, J. New electrotriggers:p-methoxycarbonylbenzyl (pMCB) as an electroremovable protecting group for carboxylic acids, phosphoric acids and alcohols. Green Chemistry 2022, 24, 5632–5636. doi:10.1039/d2gc00513a
  • Le‐Vinh, B.; Akkuş‐Dağdeviren, Z. B.; Le, N. N.; Nazir, I.; Bernkop‐Schnürch, A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics 2022, 5. doi:10.1002/adtp.202100219
  • Riebe, J.; Niemeyer, J. Mechanically Interlocked Molecules for Biomedical Applications. European Journal of Organic Chemistry 2021, 2021, 5106–5116. doi:10.1002/ejoc.202100749
  • Zhou, X.; Pan, Y.; Yu, L.; Wu, J.; Li, Z.; Li, H.; Guan, Z.; Tang, X.; Yang, Z. Feasibility of cRGD conjugation at 5'-antisense strand of siRNA by phosphodiester linkage extension. Molecular therapy. Nucleic acids 2021, 25, 603–612. doi:10.1016/j.omtn.2021.08.004
  • Lee, Y.-H.; Yu, E.; Park, C.-M. Programmable site-selective labeling of oligonucleotides based on carbene catalysis. Nature communications 2021, 12, 1681. doi:10.1038/s41467-021-21839-4
  • Yang, L.; Dmochowski, I. J. Conditionally Activated ("Caged") Oligonucleotides. Molecules (Basel, Switzerland) 2021, 26, 1481. doi:10.3390/molecules26051481
  • Clavé, G.; Reverte, M.; Vasseur, J.-J.; Smietana, M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC chemical biology 2021, 2, 94–150. doi:10.1039/d0cb00136h
  • Kishimoto, Y.; Nakagawa, O.; Fujii, A.; Yoshioka, K.; Nagata, T.; Yokota, T.; Hari, Y.; Obika, S. 2',4'-BNA/LNA with 9-(2-Aminoethoxy)-1,3-diaza-2-oxophenoxazine Efficiently Forms Duplexes and Has Enhanced Enzymatic Resistance*. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 27, 2427–2438. doi:10.1002/chem.202003982
  • Chen, C.; Wang, Z.; Jing, N.; Chen, W.; Tang, X. Photomodulation of Caged RNA Oligonucleotide Functions in Living Systems. ChemPhotoChem 2020, 5, 12–21. doi:10.1002/cptc.202000220
  • Cheng, L.; Ma, D.; Lu, L.; Ouyang, D.; Xi, Z. Building Customizable Multisite-Targeting c-Myc shRNA Array into Branch-PCR-Constructed DNA Nanovectors for Enhanced Tumor Cell Suppression. ChemistrySelect 2020, 5, 10250–10255. doi:10.1002/slct.202002609
  • Acevedo-Jake, A.; Ball, A. T.; Galli, M.; Kukwikila, M.; Denis, M.; Singleton, D. G.; Tavassoli, A.; Goldup, S. M. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. Journal of the American Chemical Society 2020, 142, 5985–5990. doi:10.1021/jacs.0c01670
  • Yu, L.; Liang, D.; Jing, N.; Chen, C.; Tang, X. Synthesis and Evaluation of Caged siRNAs with Single cRGD Modification for Photoregulating RNA Interference. Methods in molecular biology (Clifton, N.J.) 2020, 2115, 133–161. doi:10.1007/978-1-0716-0290-4_8
  • Kimura, Y.; Shu, Z.; Ito, M.; Abe, N.; Nakamoto, K.; Tomoike, F.; Shuto, S.; Ito, Y.; Abe, H. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chemical communications (Cambridge, England) 2020, 56, 466–469. doi:10.1039/c9cc04872c
  • Banno, A.; Higashi, S. L.; Shibata, A.; Ikeda, M. A stimuli-responsive DNAzyme displaying Boolean logic-gate responses. Chemical communications (Cambridge, England) 2019, 55, 1959–1962. doi:10.1039/c8cc09345h
Other Beilstein-Institut Open Science Activities