Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review

Fabio Tonin and Isabel W. C. E. Arends
Beilstein J. Org. Chem. 2018, 14, 470–483. https://doi.org/10.3762/bjoc.14.33

Supporting Information

Supporting Information features Figure S1 relative to the C7 dehydroxylation mechanism of hydroxysteroids and Figure S2 relative to the postulated biochemical pathway for the C12 dehydroxylation.

Supporting Information File 1: Supporting Figures S1 and S2.
Format: PDF Size: 611.6 KB Download

Cite the Following Article

Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review
Fabio Tonin and Isabel W. C. E. Arends
Beilstein J. Org. Chem. 2018, 14, 470–483. https://doi.org/10.3762/bjoc.14.33

How to Cite

Tonin, F.; Arends, I. W. C. E. Beilstein J. Org. Chem. 2018, 14, 470–483. doi:10.3762/bjoc.14.33

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 759.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kim, S.; Jo, H.; Lee, S.; Yang, M.; Jun, H.; Lee, Y.; Kim, G.-W.; Lee, D. Targeted echogenic and anti-inflammatory polymeric prodrug nanoparticles for the management of renal ischemia/reperfusion injury. Journal of controlled release : official journal of the Controlled Release Society 2023, 363, 574–584. doi:10.1016/j.jconrel.2023.10.004
  • Pan, Y.; Tang, S.; Zhu, L.; Lou, D.; Tan, J.; Wang, B. Design of St-2-2 7α-HSDH mutants for altering substrate preference and thermostability. Molecular Catalysis 2023, 548, 113423. doi:10.1016/j.mcat.2023.113423
  • Kim, O. Y.; Lee, S. Y.; Lee, D. Y.; Hur, S. J. Developing a procedure to extract chenodeoxycholic acid and synthesize ursodeoxycholic acid from pig by-products. Heliyon 2023, 9, e18313. doi:10.1016/j.heliyon.2023.e18313
  • Liu, T.; Wang, J.-S. Ursodeoxycholic acid administration did not reduce susceptibility to SARS-CoV-2 infection in children. Liver international : official journal of the International Association for the Study of the Liver 2023, 43, 1950–1954. doi:10.1111/liv.15660
  • d'Oelsnitz, S.; Stofel, S. K.; Ellington, A. D. Snowprint: a predictive tool for genetic biosensor discovery. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.04.29.538814
  • Huang, Y.; Lu, H.; Li, Z.; Zeng, Y.; Xu, Q.; Wu, Y. Development of HPLC-CAD method for simultaneous quantification of nine related substances in ursodeoxycholic acid and identification of two unknown impurities by HPLC-Q-TOF-MS. Journal of pharmaceutical and biomedical analysis 2023, 229, 115357. doi:10.1016/j.jpba.2023.115357
  • Yu, L.; Liu, Y.; Wang, S.; Zhang, Q.; Zhao, J.; Zhang, H.; Narbad, A.; Tian, F.; Zhai, Q.; Chen, W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut microbes 2023, 15, 2181930. doi:10.1080/19490976.2023.2181930
  • Song, P.; Zhang, X.; Feng, W.; Xu, W.; Wu, C.; Xie, S.; Yu, S.; Fu, R. Biological synthesis of ursodeoxycholic acid. Frontiers in microbiology 2023, 14, 1140662. doi:10.3389/fmicb.2023.1140662
  • Yang, B.-Y.; You, Z.-N.; Xue, J.-T.; Pan, J.; Li, C.-X.; Xu, J.-H. Clean enzymatic production of ursodeoxycholic acid enabled by a newly identified NADH-dependent 7β-hydroxysteroid dehydrogenase. Molecular Catalysis 2023, 537, 112946. doi:10.1016/j.mcat.2023.112946
  • Huang, B.; Yang, K.; Amanze, C.; Yan, Z.; Zhou, H.; Liu, X.; Qiu, G.; Zeng, W. Sequence and structure-guided discovery of a novel NADH-dependent 7β-hydroxysteroid dehydrogenase for efficient biosynthesis of ursodeoxycholic acid. Bioorganic chemistry 2022, 131, 106340. doi:10.1016/j.bioorg.2022.106340
  • Li, H.-P.; Yang, B.-Y.; Su, Y.; You, Z.-N.; Yin, W.-T.; Li, C.-X.; Zheng, G.-W.; Qu, J.; Xu, J.-H. Sustainable and Robust Closed-Loop Enzymatic Platform for Continuous/Semi-continuous Synthesis of Ursodeoxycholic Acid. ACS Sustainable Chemistry & Engineering 2022, 10, 16916–16923. doi:10.1021/acssuschemeng.2c05741
  • Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Santi, C.; Sancineto, L. FDA-Approved Small Molecules in 2022: Clinical Uses and Their Synthesis. Pharmaceutics 2022, 14, 2538. doi:10.3390/pharmaceutics14112538
  • Favale, N.; Costa, S.; Scapoli, C.; Carrieri, A.; Sabbioni, S.; Tamburini, E.; Benazzo, A.; Bernacchia, G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12α-hydroxysteroid dehydrogenase gene. Journal of applied microbiology 2022, 133, 1506–1519. doi:10.1111/jam.15657
  • Liu, Z.; Zhang, R.; Zhang, W.; Xu, Y. Effects of terminal modification on the catalytic efficiency and thermostability of Brucella melitensis 7α-hydroxysteroid dehydrogenase. Systems Microbiology and Biomanufacturing 2022, 3, 469–478. doi:10.1007/s43393-022-00124-5
  • Kollerov, V.; Donova, M. Ursodeoxycholic acid production by Gibberella zeae mutants. AMB Express 2022, 12, 105. doi:10.1186/s13568-022-01446-2
  • Pan, Y.; Tang, S.; Zhou, M.; Ao, F.; Tang, Z.; Zhu, L.; Lou, D.; Tan, J.; Wang, B. A Novel NADP(H)-Dependent 7alpha-HSDH: Discovery and Construction of Substrate Selectivity Mutant by C-Terminal Truncation. Catalysts 2022, 12, 781. doi:10.3390/catal12070781
  • Reich, J. A.; Aßmann, M.; Hölting, K.; Bubenheim, P.; Kuballa, J.; Liese, A. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein journal of organic chemistry 2022, 18, 567–579. doi:10.3762/bjoc.18.59
  • Zhao, Y.-Q.; Liu, Y.-J.; Ji, W.-T.; Liu, K.; Gao, B.; Tao, X.-Y.; Zhao, M.; Wang, F.-Q.; Wei, D.-Z. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum. Microbial cell factories 2022, 21, 59. doi:10.1186/s12934-022-01786-5
  • Jin, L.; Yang, L.; Zhao, S.; Wang, Z. A green strategy to produce potential substitute resource for bear bile using engineered Saccharomyces cerevisiae. Bioresources and Bioprocessing 2022, 9. doi:10.1186/s40643-022-00517-3
  • Shi, M.; Tang, J.; Zhang, T.; Han, H. Swertiamarin, an active iridoid glycoside from Swertia pseudochinensis H. Hara, protects against alpha-naphthylisothiocyanate-induced cholestasis by activating the farnesoid X receptor and bile acid excretion pathway. Journal of ethnopharmacology 2022, 291, 115164. doi:10.1016/j.jep.2022.115164

Patents

  • CASTALDI MICHELE; CASTALDI GRAZIANO. MICROBIOLOGICAL PROCESS FOR THE PREPARATION OF URSOCHOLIC ACID. WO 2022023155 A1, Feb 3, 2022.
  • BORNSCHEUER UWE; GROBE SASCHA; HANNEVIK EMIL; BAYER THOMAS; BADENHORST CHRISTOFFEL; BRUNDIEK HENRIKE; GROSSJOHANN BEATRICE. PROCESS FOR 7-BETA-HYDROXYLATION OF BILE ACID DERIVATIVES. EP 3933036 A1, Jan 5, 2022.
  • STAUNIG NICOLE; DONSBACH KAI OLIVER. PROCESS FOR HYDROXYLATING STEROIDS. WO 2021176068 A1, Sept 10, 2021.
  • STAUNIG NICOLE; DONSBACH KAI OLIVER. METHOD FOR HYDROXYLATION OF STEROIDS. EP 3875596 A1, Sept 8, 2021.
  • KIM HEE TAEK; RYU MI HEE; JUNG YE JEAN; SONG BONG KEUN; KANG KYOUNG HEE. METHOD FOR PRODUCING URSODEOXYCHOLIC ACID USING DEEP EUTECTIC SOLVENT. WO 2021085997 A1, May 6, 2021.
  • ENQUIST-NEWMAN MARIA; TOM ERIN; HO CLEO; SAVILE CHRISTOPHER; KUMAR ABHINAV; ESSER LAUREN; CHAN ANDREA; CLAY MICHAEL; PIGULA ADRIANNA; CHEN HSIANG-YUN. CELLS AND METHODS FOR THE PRODUCTION OF URSODEOXYCHOLIC ACID AND PRECURSORS THEREOF. WO 2020076819 A1, April 16, 2020.
Other Beilstein-Institut Open Science Activities