Enzyme-free genetic copying of DNA and RNA sequences

Marilyne Sosson and Clemens Richert
Beilstein J. Org. Chem. 2018, 14, 603–617. https://doi.org/10.3762/bjoc.14.47

Cite the Following Article

Enzyme-free genetic copying of DNA and RNA sequences
Marilyne Sosson and Clemens Richert
Beilstein J. Org. Chem. 2018, 14, 603–617. https://doi.org/10.3762/bjoc.14.47

How to Cite

Sosson, M.; Richert, C. Beilstein J. Org. Chem. 2018, 14, 603–617. doi:10.3762/bjoc.14.47

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 118.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ross, D.; Deamer, D. Template-Directed Replication and Chiral Resolution during Wet-Dry Cycling in Hydrothermal Pools. Life (Basel, Switzerland) 2023, 13, 1749. doi:10.3390/life13081749
  • Dagar, S.; Sarkar, S.; Rajamani, S. Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles. Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life 2023, 53, 43–60. doi:10.1007/s11084-023-09636-z
  • Slootbeek, A. D.; van Haren, M. H. I.; Smokers, I. B. A.; Spruijt, E. Growth, replication and division enable evolution of coacervate protocells. Chemical communications (Cambridge, England) 2022, 58, 11183–11200. doi:10.1039/d2cc03541c
  • Rivera-Madrinan, F.; Di Iorio, K.; Higgs, P. G. Rolling Circles as a Means of Encoding Genes in the RNA World. Life (Basel, Switzerland) 2022, 12, 1373. doi:10.3390/life12091373
  • Göppel, T.; Rosenberger, J. H.; Altaner, B.; Gerland, U. Thermodynamic and Kinetic Sequence Selection in Enzyme-Free Polymer Self-Assembly inside a Non-equilibrium RNA Reactor. Life (Basel, Switzerland) 2022, 12, 567. doi:10.3390/life12040567
  • Han, J.; Kervio, E.; Richert, C. High Fidelity Enzyme-Free Primer Extension with an Ethynylpyridone Thymidine Analog. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 15918–15921. doi:10.1002/chem.202102996
  • Giurgiu, C.; Fang, Z.; Aitken, H. R. M.; Kim, S. C.; Pazienza, L.; Mittal, S.; Szostak, J. W. Structure–Activity Relationships in Nonenzymatic Template‐Directed RNA Synthesis. Angewandte Chemie 2021, 133, 23107–23114. doi:10.1002/ange.202109714
  • Giurgiu, C.; Fang, Z.; Aitken, H. R.; Kim, S. C.; Pazienza, L.; Mittal, S.; Szostak, J. W. Structure-Activity Relationships in Nonenzymatic Template-Directed RNA Synthesis. Angewandte Chemie (International ed. in English) 2021, 60, 22925–22932. doi:10.1002/anie.202109714
  • Rosenberger, J. H.; Göppel, T.; Kudella, P. W.; Braun, D.; Gerland, U.; Altaner, B. Self-Assembly of Informational Polymers by Templated Ligation. Physical Review X 2021, 11, 031055. doi:10.1103/physrevx.11.031055
  • Göppel, T.; Obermayer, B.; Chen, I. A.; Gerland, U. A kinetic error filtering mechanism for enzyme-free copying of nucleic acid sequences. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.08.06.455386
  • Duzdevich, D.; Carr, C. E.; Ding, D.; Zhang, S. J.; Walton, T.; Szostak, J. W. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Nucleic acids research 2021, 49, 3681–3691. doi:10.1093/nar/gkab173
  • Duzdevich, D.; Carr, C. E.; Ding, D.; Zhang, S. J.; Walton, T.; Szostak, J. W. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.01.02.425068
  • Garte, S. Evidence for Phase Transitions in Replication Fidelity and Survival Probability at the Origin of Life. BioCosmos 2021, 1, 2–10. doi:10.2478/biocosmos-2021-0002
  • Duffy, K.; Arangundy-Franklin, S.; Holliger, P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC biology 2020, 18, 112. doi:10.1186/s12915-020-00803-6
  • Zhang, S. J.; Duzdevich, D.; Szostak, J. W. Potentially Prebiotic Activation Chemistry Compatible with Nonenzymatic RNA Copying. Journal of the American Chemical Society 2020, 142, 14810–14813. doi:10.1021/jacs.0c05300
  • Roy, S.; Bapat, N. V.; Derr, J.; Rajamani, S.; Sengupta, S. Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth. Journal of theoretical biology 2020, 506, 110446. doi:10.1016/j.jtbi.2020.110446
  • Duzdevich, D.; Carr, C. E.; Szostak, J. W. Deep sequencing of non-enzymatic RNA primer extension. Nucleic acids research 2020, 48, e70. doi:10.1093/nar/gkaa400
  • Motsch, S.; Pfeffer, D.; Richert, C. 2'/3' Regioselectivity of Enzyme-Free Copying of RNA Detected by NMR. Chembiochem : a European journal of chemical biology 2020, 21, 2013–2018. doi:10.1002/cbic.202000014
  • Duzdevich, D.; Carr, C. E.; Szostak, J. W. Deep sequencing of nonenzymatic RNA primer extension. Cold Spring Harbor Laboratory 2020. doi:10.1101/2020.02.18.955120
  • Roy, S.; Bapat, N. V.; Derr, J.; Rajamani, S.; Sengupta, S. Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth. Cold Spring Harbor Laboratory 2020. doi:10.1101/2020.02.12.944926
Other Beilstein-Institut Open Science Activities