Supporting Information
| Supporting Information File 1: Additional figure, general remarks, synthesis and characterization data, including copies of 1H and 13C NMR spectra. | ||
| Format: PDF | Size: 630.5 KB | Download |
Cite the Following Article
Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction
Yasushi Imada, Yohei Okada and Kazuhiro Chiba
Beilstein J. Org. Chem. 2018, 14, 642–647.
https://doi.org/10.3762/bjoc.14.51
How to Cite
Imada, Y.; Okada, Y.; Chiba, K. Beilstein J. Org. Chem. 2018, 14, 642–647. doi:10.3762/bjoc.14.51
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 181.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Morizumi, H.; Han, Y.; Bokareva, O. S.; Francke, R.; Kitano, Y.; Okada, Y. Controlling the reactivity of enol ether radical cations via the substitution pattern: investigation into electrochemically induced Diels–Alder reactions. Catalysis Science & Technology 2025, 15, 4932–4936. doi:10.1039/d4cy01192a
- Tian, Y.; Lv, S.; Zhang, X.; Fu, W.; Yang, P.; Fu, K.; Zhang, Q.; Yao, X.; Luo, Y.; Feng, M. Mechanism of condensed-phosphate recovery based on an electrocatalytic coupling adsorption system using metal–organic framework–derived Mg/O dual-vacancy MgO. Elsevier BV 2025. doi:10.2139/ssrn.5591353
- Tian, Y.; Lv, S.; Zhang, X.; Fu, W.; Yang, P.; Fu, K.; Zhang, Q.; Yao, X.; Luo, Y.; Feng, M. Mechanism of condensed-phosphate recovery based on an electrocatalytic coupling adsorption system using metal–organic framework–derived Mg/O dual-vacancy MgO. Elsevier BV 2025. doi:10.2139/ssrn.5472348
- Alabugin, I. V.; Eckhardt, P.; Christopher, K. M.; Opatz, T. The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis. Journal of the American Chemical Society 2024, 146, 27233–27254. doi:10.1021/jacs.4c10422
- Turlington, M. D.; Ahmed, S.; Schanze, K. S. Radical Cation Diels–Alder Reaction by Photocatalysis at a Dye Sensitized Photoanode. ACS Catalysis 2024, 14, 12512–12517. doi:10.1021/acscatal.4c01288
- Nematollahi, D.; Alizadeh, S.; Amani, A.; Khazalpour, S. Diels–Alder reaction in electroorganic synthesis. Practical Aspects of Electroorganic Synthesis; Elsevier, 2024; pp 221–247. doi:10.1016/b978-0-323-95666-6.00001-x
- Chabuka, B. K.; Alabugin, I. V. Hole Catalysis of Cycloaddition Reactions: How to Activate and Control Oxidant Upconversion in Radical-Cationic Diels-Alder Reactions. Journal of the American Chemical Society 2023, 145, 19354–19367. doi:10.1021/jacs.3c06106
- Francke, R.; Little, R. D. Electrochemical catalysis of redox-neutral organic reactions. Current Opinion in Electrochemistry 2023, 40, 101315. doi:10.1016/j.coelec.2023.101315
- Tanami, S.; Hussaini, S. R.; Kitano, Y.; Chiba, K.; Okada, Y. Probing Electron Transfer Events in Radical Cation Cycloadditions: Intramolecular vs. Intermolecular Single Electron Transfer. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202201023
- Horiguchi, G.; Okada, Y. Mechanistic Understanding of Electrocatalytic Vinylcyclopropane Rearrangement. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202201022
- SHIDA, N. Electrosynthesis Governed by Electrolyte: Case Studies that Give Some Hints for the Rational Design of Electrolyte. Electrochemistry 2022, 90, 101004. doi:10.5796/electrochemistry.22-00074
- Enders, P.; Francke, R. 3 Methods and Materials Applied in Electrosynthesis. Electrochemistry in Organic Synthesis; Georg Thieme Verlag KG, 2022. doi:10.1055/sos-sd-236-00029
- Ohmura, S.; Isogai, R.; Ishihara, K. Radical Cation [4+2] Cycloaddition of Non-Conjugated Tetrasubstituted Alkenes by an FeCl3/AgSbF6 Co-Initiator. Asian Journal of Organic Chemistry 2021, 10, 2534–2537. doi:10.1002/ajoc.202100473
- Liang, K.; Wang, S.; Cong, H.; Lu, L.; Lei, A.
- Okada, Y. Synthetic Semiconductor Photoelectrochemistry. Chemical record (New York, N.Y.) 2021, 21, 2223–2238. doi:10.1002/tcr.202100029
- Horiguchi, G.; Kamiya, H.; Okada, Y. Mechanistic Studies on TiO2 Photoelectrochemical Radical Cation [2 + 2] Cycloadditions. Journal of The Electrochemical Society 2020, 167, 155529. doi:10.1149/1945-7111/abcffc
- Wang, Q.; Wang, Q.; Zhang, Y.; Mohamed, Y. M.; Pacheco, C.; Zheng, N.; Zare, R. N.; Chen, H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chemical science 2020, 12, 969–975. doi:10.1039/d0sc05665k
- Okada, Y. Redox-Neutral Radical-Cation Reactions: Multiple Carbon–Carbon Bond Formations Enabled by Single-Electron Transfer. Electrochemistry 2020, 88, 497–506. doi:10.5796/electrochemistry.20-00088
- Nakayama, K.; Kamiya, H.; Okada, Y. EC-Backward-E Electrochemistry in Radical Cation Diels-Alder Reactions. Journal of The Electrochemical Society 2020, 167, 155518. doi:10.1149/1945-7111/abb97f
- Hu, X.; Nie, L.; Zhang, G.; Lei, A. Electrochemical Oxidative [4+2] Annulation for the π‐Extension of Unfunctionalized Heterobiaryl Compounds. Angewandte Chemie 2020, 132, 15350–15355. doi:10.1002/ange.202003656