Cite the Following Article
Phosphodiester models for cleavage of nucleic acids
Satu Mikkola, Tuomas Lönnberg and Harri Lönnberg
Beilstein J. Org. Chem. 2018, 14, 803–837.
https://doi.org/10.3762/bjoc.14.68
How to Cite
Mikkola, S.; Lönnberg, T.; Lönnberg, H. Beilstein J. Org. Chem. 2018, 14, 803–837. doi:10.3762/bjoc.14.68
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 137.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Nourafkan, E.; Yang, Z.; Maamra, M.; Kis, Z. Advancing continuous encapsulation and purification of mRNA vaccines and therapeutics. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 2025, 212, 107183. doi:10.1016/j.ejps.2025.107183
- Du, Y.; Zhu, C.; Wang, R.; Chen, S.; Li, C.; OuYang, D.; Liu, L.; Chen, Y. Inhalable Artificial Polymeric Nucleases Degrading Neutrophil Extracellular Trap-DNAs and Alleviating Pulmonary Fibrosis. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2025, e05357. doi:10.1002/advs.202505357
- Nikkel, D. J.; Wetmore, S. D. Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques. Pure and Applied Chemistry 2025. doi:10.1515/pac-2025-0507
- Karwowski, B. T. The Consequence of the Presence of Ribonucleotide for ds-DNA's Electronic Properties: Preliminary Theoretical Studies. Cells 2025, 14, 881. doi:10.3390/cells14120881
- Barros, C. H. N.; Alfaro, M.; Csiki-Fejer, A.; Bhatnagar, B.; Tschessalov, S.; Ferguson, S.; Barua, S.; Darvari, R.; Topp, E. M. Comparative Analysis of mRNA Degradation Kinetics Using Chromatographic and Electrophoretic Methods. Molecular pharmaceutics 2025, 22, 3061–3072. doi:10.1021/acs.molpharmaceut.4c01543
- Weber, S.; Weinrich, T.; Scheffer, U.; Kalden, E.; Göbel, M. W. Click Conjugates of Artificial Ribonucleases: Sequence Specific Cleavage with Multiple Turnover. Chemistry (Weinheim an der Bergstrasse, Germany) 2025, 31, e202500451. doi:10.1002/chem.202500451
- Casnati, A.; Salvio, R. An equal terms comparison of the proficiency of artificial phosphodiesterases by using simple models of RNA or DNA as benchmarks–the takeaway to design next generation supramolecular catalysts. Coordination Chemistry Reviews 2025, 531, 216479. doi:10.1016/j.ccr.2025.216479
- Qiao, Y.; Wei, L.; Su, Y.; Tan, Q.; Yang, X.; Li, S. Nanoparticle-Based Strategies to Enhance the Efficacy of STING Activators in Cancer Immunotherapy. International journal of nanomedicine 2025, 20, 5429–5456. doi:10.2147/ijn.s515893
- Liu, J.; Wang, L.; Peng, Y.; Long, S.; Zeng, H.; Deng, M.; Xiang, W.; Liu, B.; Hu, X.; Liu, X.; Xie, J.; Hou, W.; Tang, J.; Liu, J. A novel therapeutic strategy utilizing EpCAM aptamer-conjugated gemcitabine for targeting bladder cancer and cancer stem cells. Biomaterials science 2025, 13, 1398–1413. doi:10.1039/d4bm01471e
- Pourian, S.; Ashouri, A. Ionic liquid-catalyzed green synthesis of cyclohexanone diesters via double addition reaction. Research on Chemical Intermediates 2025, 51, 1341–1355. doi:10.1007/s11164-025-05515-6
- Ocampo-Hernández, J.; Mendoza, A.; Ortiz, G. R.; Rebolledo-Chávez, J. P. F.; Ramírez-Palma, L. G.; Cortés-Guzmán, F.; Cruz-Ramírez, M.; Ortiz-Frade, L. Molecular Catalysis for H2o2 Reduction Using Cu(Ii) Complexes with Nitrogen Donor Tetradentate Ligands. Elsevier BV 2025. doi:10.2139/ssrn.5163265
- Nikkel, D. J.; Kaur, R.; Wetmore, S. D. How Can One Metal Power Nucleic Acid Phosphodiester Bond Cleavage by a Nuclease? Multiscale Computational Studies Highlight a Diverse Mechanistic Landscape. The journal of physical chemistry. B 2024, 129, 3–18. doi:10.1021/acs.jpcb.4c05875
- Kost, C.; Scheffer, U.; Kalden, E.; Göbel, M. W. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2024, 14, e202400157. doi:10.1002/open.202400157
- Koski, J.; Poijärvi, E.; Tulisalo, A.; Korhonen, H.; Mikkola, S. The Cleavage of RNA Model Compounds: The Interplay Between the Nucleophile and the Leaving Group. Journal of Physical Organic Chemistry 2024, 38. doi:10.1002/poc.4664
- Zhong, W.; Wang, S.; Geng, C.; Zheng, Y.; Bai, S.; Cao, X.; Liu, K.; Yang, Y.; Lu, C.; Jiang, X. Multiplexed Random Access Approach to DNA Microspheres for High‐Capacity Data Storage. Advanced Functional Materials 2024, 34. doi:10.1002/adfm.202408852
- Nardi, A. N.; Olivieri, A.; D'Abramo, M.; Salvio, R. Unveiling the Cleavage Mechanism of an RNA Model Compound on the whole pH Scale: Computations Meet Experiments in the Determination of Reaction Rates. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300873. doi:10.1002/cphc.202300873
- Svenningsen, S. W.; Luige, O.; Abdulkarim, Z.; Strömberg, R.; Williams, N. H. Zinc N,N-bis(2-picolyl)amine Chelates Show Substitution-Dependent Cleavage of Phosphodiesters in Models as Well as of PNAzyme-RNA Bulges. Molecules (Basel, Switzerland) 2024, 29, 2123. doi:10.3390/molecules29092123
- Nardi, A. N.; Olivieri, A.; D'Abramo, M.; Amadei, A. A Theoretical-Computational Study of Phosphodiester Bond Cleavage Kinetics as a Function of the Temperature. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300952. doi:10.1002/cphc.202300952
- Ryu, J.-H.; Zheng, W.; Yang, X.-H.; Elsaidi, H.; Diakur, J.; Wiebe, L. I. Synthesis and Preliminary Evaluation of an ASGPr-Targeted Polycationic β-Cyclodextrin Carrier for Nucleosides and Nucleotides. Pharmaceutics 2024, 16, 323. doi:10.3390/pharmaceutics16030323
- Vezzoni, C. A.; Casnati, A.; Orlanducci, S.; Sansone, F.; Salvio, R. Enzyme Mimics Based on Guanidinocalix[4]arene/ Nanodiamond Hybrid Systems with Phosphodiesterase Activity. ChemCatChem 2024, 16. doi:10.1002/cctc.202301477
Patents
- SHATTOCK ROBIN; NOGAREDA LAIA. RNA MOLECULE. WO 2025052108 A2, March 13, 2025.
- SHATTOCK ROBIN; NOGAREDA LAIA. RNA MOLECULE. WO 2025008641 A2, Jan 9, 2025.