Cite the Following Article
Correlation effects and many-body interactions in water clusters
Andreas Heßelmann
Beilstein J. Org. Chem. 2018, 14, 979–991.
https://doi.org/10.3762/bjoc.14.83
How to Cite
Heßelmann, A. Beilstein J. Org. Chem. 2018, 14, 979–991. doi:10.3762/bjoc.14.83
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 392.8 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Gao, S.-S.; Bai, M.-Y.; Jiang, X.-N.; Wang, L.; Li, X.-L.; Hao, Q.; Wang, C.-S. Modelling phosphate hydration with a polarizable bond-dipole framework: parameter optimization and benchmark testing. Physical chemistry chemical physics : PCCP 2025. doi:10.1039/d5cp02569a
- Zhu, J.-Y.; Jiang, X.-N.; Hao, Q.; Wang, C.-S. Toward Accuracy and Efficiency: A Polarizable Bond-Dipole-Based Water Model. Journal of chemical theory and computation 2025. doi:10.1021/acs.jctc.5c00857
- Elahi, N.; Zeinalipour-Yazdi, C. D. A DFT assessment of the activation barrier for concerted proton transfer in cyclic water clusters (H2O)n where n = 3–8. Computational and Theoretical Chemistry 2025, 1244, 115061. doi:10.1016/j.comptc.2024.115061
- Altun, A.; Leach, I. F.; Neese, F.; Bistoni, G. A Generally Applicable Method for Disentangling the Effect of Individual Noncovalent Interactions on the Binding Energy. Angewandte Chemie (International ed. in English) 2024, 64, e202421922. doi:10.1002/anie.202421922
- Altun, A.; Leach, I. F.; Neese, F.; Bistoni, G. A Generally Applicable Method for Disentangling the Effect of Individual Noncovalent Interactions on the Binding Energy. Angewandte Chemie 2024, 137. doi:10.1002/ange.202421922
- Altun, A.; Schiavo, E.; Mehring, M.; Schulz, S.; Bistoni, G.; Auer, A. A. Rationalizing polymorphism with local correlation-based methods: a case study of pnictogen molecular crystals. Physical chemistry chemical physics : PCCP 2024, 26, 28733–28745. doi:10.1039/d4cp03697b
- Shi, B.; Li, H.; Fu, X.; Zhao, C.; Wang, A. H.; Tan, W.; Rao, Y.; Li, M.; Komarneni, S.; Yang, H. Insight into the key role of imine groups in polyaniline for adsorbing heavy metal ions: Density functional theory and experimental study. Separation and Purification Technology 2024, 335, 125866. doi:10.1016/j.seppur.2023.125866
- Shi, B.; Li, H.; Fu, X.; Zhao, C.; Wang, A. H.; Tan, W.; Rao, Y.; Li, M.; Komarneni, S.; Yang, H. Insight into the Key Role of Imine Groups in Polyaniline for Adsorbing Heavy Metal Ions: Density Functional Theory and Experimental Study. Elsevier BV 2023. doi:10.2139/ssrn.4607829
- Speake, B. T.; Irons, T. J. P.; Wibowo, M.; Johnson, A. G.; David, G.; Teale, A. M. An Embedded Fragment Method for Molecules in Strong Magnetic Fields. Journal of chemical theory and computation 2022, 18, 7412–7427. doi:10.1021/acs.jctc.2c00865
- Kwon, T.; Song, H. W.; Woo, S. Y.; Kim, J.; Sung, B. J. The accurate estimation of the third virial coefficients for helium using three‐body neural network potentials. Bulletin of the Korean Chemical Society 2022, 43, 612–619. doi:10.1002/bkcs.12497
- James, A.; John, C.; Melekamburath, A.; Rajeevan, M.; Swathi, R. S. A journey toward the heaven of chemical fidelity of intermolecular force fields. WIREs Computational Molecular Science 2022, 12. doi:10.1002/wcms.1599
- Shiranirad, M.; Burnham, C. J.; English, N. J. Machine-Learning-based Many-body Energy Analysis of Argon Clusters: fit for size?. Chemical Physics 2022, 552, 111347. doi:10.1016/j.chemphys.2021.111347
- Hellmers, J.; König, C. A unified and flexible formulation of molecular fragmentation schemes. The Journal of chemical physics 2021, 155, 164105. doi:10.1063/5.0059598
- Konrad, M.; Wenzel, W. CONI-Net: Machine Learning of Separable Intermolecular Force Fields. Journal of chemical theory and computation 2021, 17, 4996–5006. doi:10.1021/acs.jctc.1c00328
- Modrzejewski, M.; Yourdkhani, S.; Śmiga, S.; Klimeš, J. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. Journal of chemical theory and computation 2021, 17, 804–817. doi:10.1021/acs.jctc.0c00966
- Shyama, M.; Lakshmipathi, S. Water confined (H2O) n=1–10 amino acid-based ionic liquids – A DFT study on the bonding, energetics and IR spectra. Journal of Molecular Liquids 2020, 304, 112720. doi:10.1016/j.molliq.2020.112720
- Liu, K.-Y.; Herbert, J. M. Energy-Screened Many-Body Expansion: A Practical Yet Accurate Fragmentation Method for Quantum Chemistry. Journal of chemical theory and computation 2019, 16, 475–487. doi:10.1021/acs.jctc.9b01095
- Herbert, J. M. Fantasy versus reality in fragment-based quantum chemistry. The Journal of chemical physics 2019, 151, 170901. doi:10.1063/1.5126216