New standards for collecting and fitting steady state kinetic data

Kenneth A. Johnson
Beilstein J. Org. Chem. 2019, 15, 16–29. https://doi.org/10.3762/bjoc.15.2

Cite the Following Article

New standards for collecting and fitting steady state kinetic data
Kenneth A. Johnson
Beilstein J. Org. Chem. 2019, 15, 16–29. https://doi.org/10.3762/bjoc.15.2

How to Cite

Johnson, K. A. Beilstein J. Org. Chem. 2019, 15, 16–29. doi:10.3762/bjoc.15.2

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 820.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Barnsley, E. The Steady State Approximation in Enzyme Kinetics: Reflections in Its Centennial Year. Qeios 2025, 7. doi:10.32388/1c11nk.2
  • Greene, E.; Muniz, R.; Yamamura, H.; Hoff, S. E.; Bajaj, P.; Lee, D. J.; Thompson, E. M.; Arada, A.; Lee, G. M.; Bonomi, M.; Kollman, J. M.; Fraser, J. S. Product-stabilized filamentation by human glutamine synthetase allosterically tunes metabolic activity. eLife Sciences Publications, Ltd 2025. doi:10.7554/elife.108336.1
  • Greene, E.; Muniz, R.; Yamamura, H.; Hoff, S. E.; Bajaj, P.; Lee, D. J.; Thompson, E. M.; Arada, A.; Lee, G. M.; Bonomi, M.; Kollman, J. M.; Fraser, J. S. Product-stabilized filamentation by human glutamine synthetase allosterically tunes metabolic activity. eLife Sciences Publications, Ltd 2025. doi:10.7554/elife.108336
  • Stack, T. M. M. From Classroom to Publication: Improving Enzyme Kinetic Constant Estimation and Graphical Visualization. Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology 2025. doi:10.1002/bmb.70014
  • Niu, C.; Zhang, D.; Zou, D.; Zhao, W.; Liu, D.; Huang, K.; Wei, X.; Li, D.; Ye, C.; Xiong, H. Novel Insights for α-amylase Improvement: Leveraging Amylopectin into Accurate Molecular Docking and Mutant Selection. Journal of agricultural and food chemistry 2025, 73, 24251–24261. doi:10.1021/acs.jafc.5c05133
  • Atampugbire, G. A.; Quaye, J. A.; Gadda, G. How Mechanistic Enzymology Helps Industrial Biocatalysis: The Case for Kinetic Solvent Viscosity Effects. Catalysts 2025, 15, 736. doi:10.3390/catal15080736
  • Nalefski, E. A.; Hedley, S.; Rajaraman, K.; Kooistra, R. M.; Parikh, I.; Sinan, S.; Finklestein, I. J.; Madan, D. Unleashing high trans-substrate cleavage kinetics of Cas12a for nucleic acid diagnostics. Nucleic acids research 2025, 53. doi:10.1093/nar/gkaf712
  • Demisew, A. T.; Cohen, J. R.; Gruss, E. G.; Bui, J. D.; Steiner, J. L.; Xhafkollari, G.; Marasco, R. N.; Betonio, M.; Strzeminski, D.; Leyes Porello, S.; Colabroy, K. L.; Peterson, L. W. Probing the Mechanism of l‑DOPA 2,3-Dioxygenase Using Synthetic Derivatives of 3,4-Dihydroxyhydrocinnamic Acid. ACS omega 2025, 10, 32053–32069. doi:10.1021/acsomega.5c03691
  • Barnsley, E. The Steady State Approximation in Enzyme Kinetics: Reflections in Its Centennial Year. Qeios Ltd 2025. doi:10.32388/1c11nk
  • Greene, E.; Muniz, R.; Yamamura, H.; Hoff, S. E.; Bajaj, P.; Lee, D. J.; Thompson, E. M.; Arada, A.; Lee, G. M.; Bonomi, M.; Kollman, J. M.; Fraser, J. S. Product-stabilized filamentation by human glutamine synthetase allosterically tunes metabolic activity. 2025. doi:10.1101/2025.07.04.663231
  • Wieland, M.; Luizaga, J.; Duran, C.; Germscheid, B.; Rein, J.; Bruckmann, A.; Hiefinger, C.; Osuna, S.; Hupfeld, A. Reversible Substrate-Specific Photocontrol of the Chemotherapeutic Asparaginase(-Glutaminase) from Escherichia coli. ACS catalysis 2025, 15, 8462–8478. doi:10.1021/acscatal.5c01608
  • Akagawa, M.; Sugasawa, K.; Ura, K.; Sassa, A. Impact of an oxidative RNA lesion on in vitro replication catalyzed by SARS-CoV-2 RNA-dependent RNA polymerase. The Journal of biological chemistry 2025, 301, 108512. doi:10.1016/j.jbc.2025.108512
  • Tang, G. Q.; Carter, C. W. Escherichia coli deletes in vivo the same domains from a double-mutant leucyl-tRNA synthetase gene that were deleted in vitro to make the LeuAC urzyme. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.04.05.647346
  • Lau, E. S.; Majerova, M.; Hensley, N. M.; Mukherjee, A.; Vasina, M.; Pluskal, D.; Damborsky, J.; Prokop, Z.; Delroisse, J.; Bayaert, W.-S.; Parey, E.; Oliveri, P.; Marlétaz, F.; Marek, M.; Oakley, T. H. Functional Characterization of Luciferase in a Brittle Star Indicates Parallel Evolution Influenced by Genomic Availability of Haloalkane Dehalogenase. Molecular biology and evolution 2025, 42. doi:10.1093/molbev/msaf081
  • Waluga, T.; von Ziegner, F.; Skiborowski, M. Analytical and numerical approaches to the analysis of progress curves: A methodological comparison. Process Biochemistry 2025, 151, 1–13. doi:10.1016/j.procbio.2025.01.029
  • Juretić, D. Exploring the Evolution-Coupling Hypothesis: Do Enzymes' Performance Gains Correlate with Increased Dissipation?. Entropy (Basel, Switzerland) 2025, 27, 365. doi:10.3390/e27040365
  • Patra, S. K.; Randolph, N.; Kuhlman, B.; Dieckhaus, H.; Betts, L.; Douglas, J.; Wills, P. R.; Carter, C. W. Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies. Structural dynamics (Melville, N.Y.) 2025, 12, 024701. doi:10.1063/4.0000294
  • Punekar, N. S. Enzyme Kinetic Data: Collection and Analysis. ENZYMES: Catalysis, Kinetics and Mechanisms; Springer Nature Singapore, 2025; pp 189–206. doi:10.1007/978-981-97-8179-9_16
  • Creon, A.; Scheer, T. E. S.; Reinke, P.; Mashhour, A. R.; Günther, S.; Niebling, S.; Schamoni-Kast, K.; Uetrecht, C.; Meents, A.; Chapman, H. N.; Sprenger, J.; Lane, T. J. Statistical crystallography reveals an allosteric network in SARS-CoV-2 Mpro. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.01.28.635305
  • McCarty, K. D.; Guengerich, F. P. Liver fatty acid binding protein FABP1 transfers substrates to cytochrome P450 4A11 for catalysis. The Journal of biological chemistry 2025, 301, 108168. doi:10.1016/j.jbc.2025.108168
Other Beilstein-Institut Open Science Activities