A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

Munmun Ghosh, Valmik S. Shinde and Magnus Rueping
Beilstein J. Org. Chem. 2019, 15, 2710–2746. https://doi.org/10.3762/bjoc.15.264

Cite the Following Article

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions
Munmun Ghosh, Valmik S. Shinde and Magnus Rueping
Beilstein J. Org. Chem. 2019, 15, 2710–2746. https://doi.org/10.3762/bjoc.15.264

How to Cite

Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710–2746. doi:10.3762/bjoc.15.264

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 436.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Peng, L.; Li, J.; Liu, M.; Qin, W.; Wang, G.; Song, J.; Gong, L.-Z.; Guo, C. Electricity-enabled asymmetric dual Co/pyridoxal catalysis. Nature Catalysis 2026. doi:10.1038/s41929-025-01474-8
  • Shinde, P. S.; Shinde, V. S.; Rueping, M. Low-valent cobalt catalyzed direct dehydroxylative cross-coupling of benzyl alcohols with aryl-chlorides. Chemical science 2026, 17, 652–663. doi:10.1039/d5sc05919d
  • Doménech-Carbó, A. Electrochemical processes of organic compounds. Organic Electrochemistry; Elsevier, 2026; pp 19–45. doi:10.1016/b978-0-443-33399-6.00022-5
  • Andolina, S.; Puglisi, A.; Rossi, S.; Medici, F.; Benaglia, M. Enantioselective organocatalytic electrochemical α-chlorination of aldehydes. Organic Chemistry Frontiers 2025, 12, 7055–7063. doi:10.1039/d5qo01249j
  • Liu, M.; Guo, C. Electricity-Enhanced Lewis Acid-Catalyzed Asymmetric Radical Reactions. Accounts of chemical research 2025, 58, 3427–3441. doi:10.1021/acs.accounts.5c00635
  • Rani, S.; Sbei, N.; Rahali, S.; Aslam, S.; Hardwick, T.; Ahmed, N. Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters 2025, 36, 111216. doi:10.1016/j.cclet.2025.111216
  • You, X.; Gao, X.; Wang, Y.; Jiao, K.-J. Recent advances in electrochemical C-H chalcogenation (O/S/Se) of heteroaromatics. Organic & biomolecular chemistry 2025, 23, 9537–9553. doi:10.1039/d5ob01450f
  • Renner, A. C.; Thorat, S. S.; Subramanian, H.; Sibi, M. P. Enantioselective radical chemistry: a bright future ahead. Beilstein journal of organic chemistry 2025, 21, 2283–2296. doi:10.3762/bjoc.21.174
  • Nasier, A.; Liu, M.; Guo, C. Enantioselective Catalytic 1,2-Benzoxazolyl Migration for Tertiary α-Hydroxy Ester Synthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 2025, 31, e02635. doi:10.1002/chem.202502635
  • Shinde, P. S.; Shinde, V. S.; Zhu, C.; Rueping, M. Electrochemical Cobalt-Catalyzed Cross-Electrophile Coupling of Alcohols and Trifluoroalkenes via Simultaneous C–F and C–O Bond Cleavage. ACS Catalysis 2025, 15, 17198–17205. doi:10.1021/acscatal.5c05140
  • Chen, H.; Rueping, M. Alkynyl‐Germanium Architectures Through Electrochemical Low‐Valent Iron‐Catalyzed Conjunctive Coupling. Angewandte Chemie 2025, 137. doi:10.1002/ange.202516109
  • Chen, H.; Rueping, M. Alkynyl-Germanium Architectures Through Electrochemical Low-Valent Iron-Catalyzed Conjunctive Coupling. Angewandte Chemie (International ed. in English) 2025, 64, e202516109. doi:10.1002/anie.202516109
  • TOMIYAMA, R.; HAMASAKI, K.; YONEYAMA, S.; XU, P.; MATSUMOTO, K. New Concept of Capillary Covered Carbon Felt Electrodes. Application to Electro-organic Synthesis in Small Scale. Electrochemistry 2025, 93, 97005. doi:10.5796/electrochemistry.25-00104
  • Stenina, I. A.; Yaroslavtsev, A. B. Electrochemical Hydrogenation Using Membrane Reactors. Membranes and Membrane Technologies 2025, 7, 1–14. doi:10.1134/s2517751625600451
  • Li, N.; Ye, X.; Liu, Y.; Song, J. Enantioselective radical α-enolation of esters via electrochemical chiral isothiourea catalysis. Nature Catalysis 2025, 8, 957–967. doi:10.1038/s41929-025-01408-4
  • Ma, D.; Qiu, Y. Electrochemical strategies for advancing enantioselective enamine catalysis. Chinese Chemical Letters 2025, 111892. doi:10.1016/j.cclet.2025.111892
  • Bortolami, M.; Bostan, C.; Margarita, C.; Vetica, F.; Feroci, M. Amino Acids as Electrode Modifiers in the Diastereoselective Electropinacolization of 4-Fluoroacetophenone. ACS Electrochemistry 2025, 1, 1687–1697. doi:10.1021/acselectrochem.5c00131
  • Li, M.; Peters, J. C. Electrochemical Nickel-Catalyzed Asymmetric Hydrogenation of C═C Bonds Facilitated by a Proton-Coupled Electron Transfer Mediator. ACS Catalysis 2025, 15, 13720–13726. doi:10.1021/acscatal.5c04130
  • Sun, M.; Wang, Y.; Zeng, Y.; Xiong, J.; Li, J.; Liu, T.; Xu, A.; Li, F. Minireview and Outlook of Electrochemical Palladium Membrane Reactors for Sustainable Hydrogenation. Energy & Fuels 2025, 39, 13997–14006. doi:10.1021/acs.energyfuels.5c02648
  • Cao, X.; Fu, Y.; Tao, Y.; Lu, Q. Enantioselective electroreductive alkyne-aldehyde coupling. Nature communications 2025, 16, 5686. doi:10.1038/s41467-025-60230-5
Other Beilstein-Institut Open Science Activities