Cite the Following Article
A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions
Munmun Ghosh, Valmik S. Shinde and Magnus Rueping
Beilstein J. Org. Chem. 2019, 15, 2710–2746.
https://doi.org/10.3762/bjoc.15.264
How to Cite
Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710–2746. doi:10.3762/bjoc.15.264
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 436.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rani, S.; Sbei, N.; Rahali, S.; Aslam, S.; Hardwick, T.; Ahmed, N. Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters 2025, 36, 111216. doi:10.1016/j.cclet.2025.111216
- You, X.; Gao, X.; Wang, Y.; Jiao, K.-J. Recent advances in electrochemical C-H chalcogenation (O/S/Se) of heteroaromatics. Organic & biomolecular chemistry 2025, 23, 9537–9553. doi:10.1039/d5ob01450f
- Renner, A. C.; Thorat, S. S.; Subramanian, H.; Sibi, M. P. Enantioselective radical chemistry: a bright future ahead. Beilstein Journal of Organic Chemistry 2025, 21, 2283–2296. doi:10.3762/bjoc.21.174
- Nasier, A.; Liu, M.; Guo, C. Enantioselective Catalytic 1,2-Benzoxazolyl Migration for Tertiary α-Hydroxy Ester Synthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 2025, 31, e02635. doi:10.1002/chem.202502635
- Shinde, P. S.; Shinde, V. S.; Zhu, C.; Rueping, M. Electrochemical Cobalt-Catalyzed Cross-Electrophile Coupling of Alcohols and Trifluoroalkenes via Simultaneous C–F and C–O Bond Cleavage. ACS Catalysis 2025, 15, 17198–17205. doi:10.1021/acscatal.5c05140
- Chen, H.; Rueping, M. Alkynyl‐Germanium Architectures Through Electrochemical Low‐Valent Iron‐Catalyzed Conjunctive Coupling. Angewandte Chemie 2025, 137. doi:10.1002/ange.202516109
- TOMIYAMA, R.; HAMASAKI, K.; YONEYAMA, S.; XU, P.; MATSUMOTO, K. New Concept of Capillary Covered Carbon Felt Electrodes. Application to Electro-organic Synthesis in Small Scale. Electrochemistry 2025, 93, 97005. doi:10.5796/electrochemistry.25-00104
- Chen, H.; Rueping, M. Alkynyl-Germanium Architectures Through Electrochemical Low-Valent Iron-Catalyzed Conjunctive Coupling. Angewandte Chemie (International ed. in English) 2025, e202516109. doi:10.1002/anie.202516109
- Stenina, I. A.; Yaroslavtsev, A. B. Electrochemical Hydrogenation Using Membrane Reactors. Membranes and Membrane Technologies 2025, 7, 1–14. doi:10.1134/s2517751625600451
- Li, N.; Ye, X.; Liu, Y.; Song, J. Enantioselective radical α-enolation of esters via electrochemical chiral isothiourea catalysis. Nature Catalysis 2025, 8, 957–967. doi:10.1038/s41929-025-01408-4
- Ma, D.; Qiu, Y. Electrochemical strategies for advancing enantioselective enamine catalysis. Chinese Chemical Letters 2025, 111892. doi:10.1016/j.cclet.2025.111892
- Bortolami, M.; Bostan, C.; Margarita, C.; Vetica, F.; Feroci, M. Amino Acids as Electrode Modifiers in the Diastereoselective Electropinacolization of 4-Fluoroacetophenone. ACS Electrochemistry 2025, 1, 1687–1697. doi:10.1021/acselectrochem.5c00131
- Li, M.; Peters, J. C. Electrochemical Nickel-Catalyzed Asymmetric Hydrogenation of C═C Bonds Facilitated by a Proton-Coupled Electron Transfer Mediator. ACS Catalysis 2025, 15, 13720–13726. doi:10.1021/acscatal.5c04130
- Sun, M.; Wang, Y.; Zeng, Y.; Xiong, J.; Li, J.; Liu, T.; Xu, A.; Li, F. Minireview and Outlook of Electrochemical Palladium Membrane Reactors for Sustainable Hydrogenation. Energy & Fuels 2025, 39, 13997–14006. doi:10.1021/acs.energyfuels.5c02648
- Cao, X.; Fu, Y.; Tao, Y.; Lu, Q. Enantioselective electroreductive alkyne-aldehyde coupling. Nature communications 2025, 16, 5686. doi:10.1038/s41467-025-60230-5
- Tan, X.; Zhou, Z.; Shao, M.; Sun, J. Electrochemical Enantioselective Oxidation of Indoles via Chiral Phosphoric Acid Catalysis in Cooperation with H3PO4 in Aqueous Media. Angewandte Chemie (International ed. in English) 2025, 64, e202510078. doi:10.1002/anie.202510078
- Tan, X.; Zhou, Z.; Shao, M.; Sun, J. Electrochemical Enantioselective Oxidation of Indoles via Chiral Phosphoric Acid Catalysis in Cooperation with H3PO4 in Aqueous Media. Angewandte Chemie 2025, 137. doi:10.1002/ange.202510078
- Nie, M.; Fu, Y.; Tao, Y.; Lu, Q. Electrochemically Driven Paired Oxidative and Reductive Catalysis. ChemCatChem 2025, 17. doi:10.1002/cctc.202402158
- Kaboudin, B.; Behroozi, M.; Sadighi, S.; Asgharzadeh, F. Recent advances in the electrochemical synthesis of organophosphorus compounds. Beilstein journal of organic chemistry 2025, 21, 770–797. doi:10.3762/bjoc.21.61
- Boos, P.; Pandit, N. K.; Dana, S.; von Münchow, T.; Hashidoko, A.; Haberstock, L.; Herbst‐Irmer, R.; Stalke, D.; Ackermann, L. Multiple Atropo Selectivity by κ2‐N,O‐Oxazoline Urea Ligands in Cobaltaelectro‐Catalyzed C─H Activations: Decoding Selectivity with Data Science Integration. ChemistryEurope 2025, 3. doi:10.1002/ceur.202500071